Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Gourcerol is active.

Publication


Featured researches published by Guillaume Gourcerol.


Peptides | 2006

Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents.

Guillaume Gourcerol; Mulugeta Million; David W. Adelson; Y. Wang; Lixin Wang; Jean Rivier; David H. St-Pierre; Yvette Taché

Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300 microg/kg, i.p.) did not influence cumulative food intake for the 2h post-injection in rats or mice nor gastric emptying in rats. In rats, obestatin (300 microg/kg) did not modify CCK (1 microg/kg, i.p.)-induced significant decrease in food intake (36.6%) and gastric emptying (31.0%). Furthermore, while rats injected with CCK (0.3 microg/kg, i.v.) displayed gastric relaxation, no change in gastric intraluminal pressure was elicited by obestatin (300 microg/kg, i.v.) pre- or post-CCK administration. In in vitro rat gastric vagal afferent preparations, 20 units that had non-significant changes in basal activity after obestatin at 30 microg responded to CCK at 10 ng by a 182% increase. These data show that obestatin neither influences cumulative food intake, gastric motility or vagal afferent activity nor CCK-induced satiety signaling.


Regulatory Peptides | 2007

Lack of obestatin effects on food intake: should obestatin be renamed ghrelin-associated peptide (GAP)?

Guillaume Gourcerol; David H. St-Pierre; Yvette Taché

Obestatin is a newly identified ghrelin-associated peptide (GAP) that is derived from post-translational processing of the prepro-ghrelin gene. Obestatin has been reported initially to be the endogenous ligand for the orphan receptor G protein-coupled receptor 39 (GPR39), and to reduce refeeding- and ghrelin-stimulated food intake and gastric transit in fasted mice, and body weight gain upon chronic peripheral injection. However, recent reports indicate that obestatin is unlikely to be the endogenous ligand for GPR39 based on the lack of specific binding on GRP39 receptor expressing cells and the absence of signal transduction pathway activation. In addition, a number of studies provided convergent evidence that ghrelin injected intracerebroventricularly or peripherally did not influence food intake, body weight gain, gastric transit, gastrointestinal motility, and gastric vagal afferent activity, as well as pituitary hormone secretions, in rats or mice. Similarly, obestatin did not alter ghrelin-induced stimulation of food intake or gastric transit. Therefore, the present state-of-knowledge on obestatin and GPR39 is leaving many unanswered questions that deserve further consideration. Those relate not only to redefining the biological action of obestatin that should be renamed GAP, but also the identification of the native ligand for GPR39.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways.

Muriel H. Larauche; Guillaume Gourcerol; Lixin Wang; Karina Pambukchian; Stefan Brunnhuber; David W. Adelson; Jean Rivier; Mulugeta Million; Yvette Taché

Corticotropin-releasing factor (CRF) 1 receptor (CRF(1)) activation in the brain is a core pathway orchestrating the stress response. Anatomical data also support the existence of CRF signaling components within the colon. We investigated the colonic response to intraperitoneal (ip) injection of cortagine, a newly developed selective CRF(1) peptide agonist. Colonic motor function and visceral motor response (VMR) were monitored by using a modified miniaturized pressure transducer catheter in adult conscious male Sprague-Dawley rats and C57Bl/6 mice. Colonic permeability was monitored by the Evans blue method and myenteric neurons activation by Fos immunohistochemistry. Compared with vehicle, cortagine (10 microg/kg ip) significantly decreased the distal colonic transit time by 45% without affecting gastric transit, increased distal and transverse colonic contractility by 35.6 and 66.2%, respectively, and induced a 7.1-fold increase in defecation and watery diarrhea in 50% of rats during the first hour postinjection whereas intracerebroventricular (icv) cortagine (3 microg/rat) had lesser effects. Intraperitoneal (ip) cortagine also increased colonic permeability, activated proximal and distal colonic myenteric neurons, and induced visceral hypersensitivity to a second set of phasic colorectal distention (CRD). The CRF antagonist astressin (10 mug/kg ip) abolished ip cortagine-induced hyperalgesia whereas injected icv it had no effect. In mice, cortagine (30 microg/kg ip) stimulated defecation by 7.8-fold, induced 60% incidence of diarrhea, and increased VMR to CRD. Stresslike colonic alterations induced by ip cortagine in rats and mice through restricted activation of peripheral CRF(1) receptors support a role for peripheral CRF(1) signaling as the local arm of the colonic response to stress.


Obesity | 2007

Preproghrelin-derived Peptide, Obestatin, Fails to Influence Food Intake in Lean or Obese Rodents

Guillaume Gourcerol; Tamer Coskun; Libbey S. Craft; John P. Mayer; Mark L. Heiman; Lixin Wang; Mulugeta Million; David H. St.-Pierre; Yvette Taché

Objectives: Obestatin has been initially characterized as a new peptide derived from the ghrelin precursor, which suppresses food intake and inhibits the orexigenic and prokinetic actions of ghrelin when injected peripherally or centrally in lean mice. However, reproducing these data remains controversial. Reasons for the disparity may be the use of different doses, routes, and animal models. We aimed to investigate the effects of peripheral and intracisternal (IC) injection of obestatin on feeding, gastric motility, and blood glucose in rats as well as in diet‐induced obese (DIO) mice.


Gastroenterology | 2011

Activation of Corticotropin-Releasing Factor Receptor 2 Mediates the Colonic Motor Coping Response to Acute Stress in Rodents

Guillaume Gourcerol; S. Vincent Wu; Pu Qing Yuan; Hung Pham; Marcel Miampamba; Muriel H. Larauche; Paul M. Sanders; Tomofumi Amano; Agata Mulak; Eunok Im; Charalabos Pothoulakis; Jean Rivier; Yvette Taché; Mulugeta Million

BACKGROUND & AIMS Corticotropin-releasing factor receptor-1 (CRF(1)) mediates the stress-induced colonic motor activity. Less is known about the role of CRF(2) in the colonic response to stress. METHODS We studied colonic contractile activity in rats and CRF(2)-/-, CRF-overexpressing, and wild-type mice using still manometry; we analyzed defecation induced by acute partial-restraint stress (PRS), and/or intraperitoneal injection of CRF ligands. In rats, we monitored activation of the colonic longitudinal muscle myenteric plexus (LMMP) neurons and localization of CRF(1) and CRF(2) using immunohistochemical and immunoblot analyses. We measured phosphorylation of extracellular signal-regulated kinase 1/2 by CRF ligands in primary cultures of LMMP neurons (PC-LMMPn) and cyclic adenosine monophosphate (cAMP) production in human embryonic kidney-293 cells transfected with CRF(1) and/or CRF(2). RESULTS In rats, a selective agonist of CRF(2) (urocortin 2) reduced CRF-induced defecation (>50%), colonic contractile activity, and Fos expression in the colonic LMMP. A selective antagonist of CRF(2) (astressin(2)-B) increased these responses. Urocortin 2 reduced PRS-induced colonic contractile activity in wild-type and CRF-overexpressing mice, whereas disruption of CRF(2) increased PRS-induced colonic contractile activity and CRF-induced defecation. CRF(2) colocalized with CRF(1) and neuronal nitric oxide synthase in the rat colon, LMMP, and PC-LMMPn. CRF-induced phosphorylation of extracellular signal-regulated kinase in PC-LMMPn; this was inhibited or increased by a selective antagonist of CRF(1) (NBI35965) or astressin(2)-B, respectively. The half maximal effective concentration, EC(50), for the CRF-induced cAMP response was 8.6 nmol/L in human embryonic kidney-293 cells that express only CRF(1); this response was suppressed 10-fold in cells that express CRF(1) and CRF(2). CONCLUSIONS In colon tissues of rodents, CRF(2) activation inhibits CRF(1) signaling in myenteric neurons and the stress-induced colonic motor responses. Disruption of CRF(2) function impairs colonic coping responses to stress.


Peptides | 2008

Peripheral obestatin has no effect on feeding behavior and brain Fos expression in rodents

P Kobelt; Anna-Sophia Wisser; A Stengel; Miriam Goebel; Norbert Bannert; Guillaume Gourcerol; Tobias Inhoff; Steffen Noetzel; B. Wiedenmann; Burghard F. Klapp; Yvette Taché; H Mönnikes

Obestatin is produced in the stomach from proghrelin by post-translational cleavage. The initial report claimed anorexigenic effects of obestatin in mice. Contrasting studies indicated no effect of obestatin on food intake (FI). We investigated influences of metabolic state (fed/fasted), environmental factors (dark/light phase) and brain Fos response to intraperitoneal (ip) obestatin in rats, and used the protocol from the original study assessing obestatin effects in mice. FI was determined in male rats injected ip before onset of dark or light phase, with obestatin (1 or 5 micromol/kg), CCK8S (3.5 nmol/kg) or 0.15 M NaCl, after fasting (16 h, n=8/group) or ad libitum (n=10-14/group) food intake. Fos expression in hypothalamic and brainstem nuclei was examined in freely fed rats 90 min after obestatin (5 micromol/kg), CCK8S (1.75 nmol/kg) or 0.15 M NaCl (n=4/group). Additionally, fasted mice were injected ip with obestatin (1 micromol/kg) or urocortin 1 (2 nmol/kg) 15 min before food presentation. No effect on FI was observed after obestatin administration during the light and dark phase under both metabolic conditions while CCK8S reduced FI irrespectively of the conditions. The number of Fos positive neurons was not modified by obestatin while CCK8S increased Fos expression in selective brain nuclei. Obestatin did not influence the refeeding response to a fast in mice, while urocortin was effective. Therefore, peripheral obestatin has no effect on FI under various experimental conditions and did not induce Fos in relevant central neuronal circuitries modulating feeding in rodents.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Cholinergic giant migrating contractions in conscious mouse colon assessed by using a novel noninvasive solid-state manometry method: modulation by stressors

Guillaume Gourcerol; Lixin Wang; David W. Adelson; Muriel H. Larauche; Yvette Taché; Mulugeta Million

There is a glaring lack of knowledge on mouse colonic motility in vivo, primarily due to unavailability of adequate recording methods. Using a noninvasive miniature catheter pressure transducer inserted into the distal colon, we assessed changes in colonic motility in conscious mice induced by various acute or chronic stressors and determined the neurotransmitters mediating these changes. Mice exposed to restraint stress (RS) for 60 min displayed distal colonic phasic contractions including high-amplitude giant migrating contractions (GMCs), which had peak amplitudes >25 mmHg and occurred at a rate of 15-25 h(-1) of which over 50% were aborally propagative. Responses during the first 20-min of RS were characterized by high-frequency and high-amplitude contractions that were correlated with defecation. RS-induced GMCs and fecal pellet output were blocked by atropine (0.5 mg/kg ip) or the corticotrophin releasing factor (CRF) receptor antagonist astressin-B (100 microg/kg ip). RS activated colonic myenteric neurons as shown by Fos immunoreactivity. In mice previously exposed to repeated RS (60 min/day, 14 days), or in transgenic mice that overexpress CRF, the duration of stimulation of phasic colonic contractions was significantly shorter (10 vs. 20 min). In contrast to RS, abdominal surgery abolished colonic contractions including GMCs. These findings provide the first evidence for the presence of frequent cholinergic-dependent GMCs in the distal colon of conscious mice and their modulation by acute and chronic stressors. Noninvasive colonic manometry opens new venues to investigate colonic motor function in genetically modified mice relevant to diseases that involve colonic motility alterations.


Peptides | 2011

Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice

Lixin Wang; Andreas Stengel; Miriam Goebel; Vicente Martinez; Guillaume Gourcerol; Jean Rivier; Yvette Taché

The orexigenic effect of urocortins (Ucns), namely Ucn 1, Ucn 2 and Ucn 3 through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF(2)) in the regulation of food intake using intraperitoneal (ip) injection of Ucns and the selective CRF(2) antagonist, astressin(2)-B, and CRF(2) knockout (-/-) mice. Meal structures were monitored using an automated episodic solid food intake monitoring system. Ucn 2 (3, 10 or 30 μg/kg, ip) induced a rapid in onset, long lasting and dose-dependent decrease (38%, 66% and 86%, respectively at 4h) of cumulative food intake after an overnight fast in mice. Ucn 3 anorexic effect was 10-times less potent. Astressin(2)-B (30 or 100 μg/kg) injected ip, but not intracerebroventricularly, blocked the inhibitory effect of ip Ucn 1 and Ucn 2 (10 μg/kg). Fasted CRF(2-/-) mice did not respond to ip Ucn 1 (10 μg/kg). Meal microstructure analysis of the 4-h re-feeding response to an overnight fast showed that Ucn 2 (10 μg/kg, ip) decreased meal size and duration, but increased meal frequency. In mice fed ad libitum, Ucn 2 (30 μg/kg) injected ip before the dark phase decreased the 4-h nocturnal meal size and duration without influencing meal frequency while the 10 μg/kg dose had no effect. These data indicate that Ucns, through peripheral CRF(2) receptor-mediated induction of satiation, inhibit the eating response to a fast more potently than the physiological nocturnal feeding in mice.


Peptides | 2011

Modulation of gastric motility by brain-gut peptides using a novel non-invasive miniaturized pressure transducer method in anesthetized rodents

Guillaume Gourcerol; David W. Adelson; Mulugeta Million; Lixin Wang; Yvette Taché

Acute in vivo measurements are often the initial, most practicable approach used to investigate the effects of novel compounds or genetic manipulations on the regulation of gastric motility. Such acute methods typically involve either surgical implantation of devices or require intragastric perfusion of solutions, which can substantially alter gastric activity and may require extended periods of time to allow stabilization or recovery of the preparation. We validated a simple, non-invasive novel method to measure acutely gastric contractility, using a solid-state catheter pressure transducer inserted orally into the gastric corpus, in fasted, anesthetized rats or mice. The area under the curve of the phasic component (pAUC) of intragastric pressure (IGP) was obtained from continuous manometric recordings of basal activity and in responses to central or peripheral activation of cholinergic pathways, or to abdominal surgery. In rats, intravenous ghrelin or intracisternal injection of the thyrotropin-releasing hormone agonist, RX-77368, significantly increased pAUC while coeliotomy and cacal palpation induced a rapid onset inhibition of phasic activity lasting for the 1-h recording period. In mice, RX-77368 injected into the lateral brain ventricle induced high-amplitude contractions, and carbachol injected intraperitoneally increased pAUC significantly, while coeliotomy and cecal palpation inhibited baseline contractile activity. In wild-type mice, cold exposure (15 min) increased gastric phasic activity and tone, while there was no gastric response in corticotropin releasing factor (CRF)-overexpressing mice, a model of chronic stress. Thus, the novel solid-state manometric approach provides a simple, reliable means for acute pharmacological studies of gastric motility effects in rodents. Using this method we established in mice that the gastric motility response to central vagal activation is impaired under chronic expression of CRF.


Journal of Medicinal Chemistry | 2007

Stressin1-A, a potent corticotropin releasing factor receptor 1 (CRF1)-selective peptide agonist.

Jean Rivier; Jozsef Gulyas; Koichi S. Kunitake; Michael R. DiGruccio; Jeffrey P. Cantle; Marilyn H. Perrin; Cindy Donaldson; Joan Vaughan; Mulugeta Million; Guillaume Gourcerol; David W. Adelson; Catherine Rivier; Yvette Taché; Wylie Vale

Collaboration


Dive into the Guillaume Gourcerol's collaboration.

Top Co-Authors

Avatar

Yvette Taché

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixin Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Rivier

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pu-Qing Yuan

University of California

View shared research outputs
Top Co-Authors

Avatar

David H. St-Pierre

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agata Mulak

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge