Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lovisa Afzelius is active.

Publication


Featured researches published by Lovisa Afzelius.


Drug Metabolism Reviews | 2007

STATE-OF-THE-ART TOOLS FOR COMPUTATIONAL SITE OF METABOLISM PREDICTIONS: COMPARATIVE ANALYSIS, MECHANISTICAL INSIGHTS, AND FUTURE APPLICATIONS

Lovisa Afzelius; Catrin Hasselgren Arnby; Anders Broo; Lars Carlsson; Christine Isaksson; Ulrik Jurva; Britta Kjellander; Karin Kolmodin; Kristina A. Nilsson; Florian Raubacher; Lars Weidolf

In drug design, it is crucial to have reliable information on how a chemical entity behaves in the presence of metabolizing enzymes. This requires substantial experimental efforts. Consequently, being able to predict the likely site/s of metabolism in any compound, synthesized or virtual, would be highly beneficial and time efficient. In this work, six different methodologies for predictions of the site of metabolism (SOM) have been compared and validated using structurally diverse data sets of drug-like molecules with well-established metabolic pattern in CYP3A4, CYP2C9, or both. Three of the methods predict the SOM based on the ligands chemical structure, two additional methods use structural information of the enzymes, and the sixth method combines structure and ligand similarity and reactivity. The SOM is correctly predicted in 50 to 90% of the cases, depending on method and enzyme, which is an encouraging rate. We also discuss the underlying mechanisms of cytochrome P450 metabolism in the light of the results from this comparison.


Drug Metabolism and Disposition | 2006

COMPARISON OF METHODS FOR THE PREDICTION OF THE METABOLIC SITES FOR CYP3A4-MEDIATED METABOLIC REACTIONS

Diansong Zhou; Lovisa Afzelius; Scott W. Grimm; Tommy B. Andersson; Randy J. Zauhar; Ismael Zamora

Predictions of the metabolic sites for new chemical entities, synthesized or only virtual, are important in the early phase of drug discovery to guide chemistry efforts in the synthesis of new compounds with reduced metabolic liability. This information can now be obtained from in silico predictions, and therefore, a thorough and unbiased evaluation of the computational techniques available is needed. Several computational methods to predict the metabolic hot spots are emerging. In this study, metabolite identification using MetaSite and a docking methodology, GLUE, were compared. Moreover, the published CYP3A4 crystal structure and computed CYP3A4 homology models were compared for their usefulness in predicting metabolic sites. A total of 227 known CYP3A4 substrates reported to have one or more metabolites adding up to 325 metabolic pathways were analyzed. Distance-based fingerprints and four-point pharmacophore derived from GRID molecular interaction fields were used to characterize the substrate and protein in MetaSite and the docking methodology, respectively. The CYP3A4 crystal structure and homology model with the reactivity factor enabled achieved a similar prediction success (78%) using the MetaSite method. The docking method had a relatively lower prediction success (∼57% for the homology model), although it still may provide useful insights for interactions between ligand and protein, especially for uncommon reactions. The MetaSite methodology is automated, rapid, and has relatively accurate predictions compared with the docking methodology used in this study.


Xenobiotica | 2010

Evaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compounds

Anna-Karin Sohlenius-Sternbeck; Lovisa Afzelius; P. Prusis; J. Neelissen; Janet Hoogstraate; Jenny Johansson; E. Floby; A. Bengtsson; O. Gissberg; J. Sternbeck; Carl Petersson

We compare three different approaches to scale clearance (CL) from human hepatocyte and microsome CLint (intrinsic CL) for 52 drug compounds. By using the well-stirred model with protein binding included only 11% and 30% of the compounds were predicted within 2-fold and the average absolute fold errors (AAFE) for the predictions were 5.9 and 4.1 for hepatocytes and microsomes, respectively. When predictions were performed without protein binding, 59% of the compounds were predicted within 2-fold using either hepatocytes or microsomes and the AAFE was 2.2 and 2.3, respectively. For hepatocytes and microsomes there were significant correlations (P = 8.7 × 10−13, R2 = 0.72; P = 2.8 × 10−9, R2 = 0.61) between predicted CLint in vivo (obtained from in vitro CLint) and measured CLint in vivo (obtained using the well-stirred model). When CL was calculated from the regression, 76% and 70% of the compounds were predicted within 2-fold and the AAFE was 1.6 and 1.8 for hepatocytes and microsomes, respectively. We demonstrate that microsomes and hepatocytes are in many cases comparable when scaling of CL is performed from regression. By using the hepatocyte regression, CL for 82% of the compounds in an independent test set (n = 11) were predicted within 2-fold (AAFE 1.4). We suggest that a regression line that adjusts for systematic under-predictions should be the first-hand choice for scaling of CL.


Xenobiotica | 2012

Practical use of the regression offset approach for the prediction of in vivo intrinsic clearance from hepatocytes

Anna-Karin Sohlenius-Sternbeck; Christopher R. Jones; Douglas Ferguson; Brian Middleton; Denis Projean; E. Floby; Johan Bylund; Lovisa Afzelius

Systematic under-prediction of clearance is frequently associated with in vitro kinetic data when extrapolated using physiological scaling factors, appropriate binding parameters and the well-stirred model. The present study describes a method of removing this systematic bias through application of empirical correction factors derived from regression analyses applied to the in vitro and in vivo data for a defined set of reference compounds. Linear regression lines were established with in vivo intrinsic clearance (CLint), derived from in vivo clearance data and scaled in vitro intrinsic clearance from isolated hepatocyte incubations. The scaled CLint was empirically corrected to a predicted in vivo CLint using the slope and intercept from a uniform weighted linear regression applied to the in vitro to in vivo extrapolation. Cross validation of human data demonstrated that 66% of the reference compounds had a predicted in vivo CLint within two-fold of the observed value. The average absolute fold error (AAFE) for the in vivo CLint predictions was 1.90. For rat, 54% of the compounds had a predicted value within two-fold of the observed and the AAFE was 1.98. Three AstraZeneca projects are used to exemplify how a two-sided prediction interval, applied to the rat regression corrected reference data, can form the basis for assessing the likelihood that, for a given chemical series, the in vitro kinetic data is predictive of in vivo clearance and is therefore appropriate to guide optimisation of compound metabolic stability.


Journal of Computer-aided Molecular Design | 2002

Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors

Lovisa Afzelius; Collen Masimirembwa; Anders Karlén; Tommy B. Andersson; Ismael Zamora

This study describes the use of alignment-independent descriptors for obtaining qualitative and quantitative predictions of the competitive inhibition of CYP2C9 on a serie of highly structurally diverse compounds. This was accomplished by calculating alignment independent descriptors in ALMOND. These GRid INdependent Descriptors (GRIND) represent the most important GRID-interactions as a function of the distance instead of the actual position of each grid-point. The experimental data was determined under uniform conditions. The inhibitor data set consists of 35 structurally diverse competitive stereospecific inhibitors of the cytochrome P450 2C9 and the non -inhibitor data set of 46 compounds. In a PLS discriminant analysis 21 inhibitors and 21 non-inhibitors (1 and 0 as activities) were analyzed using the ALMOND program obtaining a model with an r2 of 0.74 and a cross-validation value (q2) of 0.64. The model was externally validated with 39 compounds (14 inhibitors/25 non-inhibitors). 74% of the compounds were correctly predicted and an additional 13% was assigned to a borderline cluster. Thereafter, a model for quantitative predictions was generated by a PLS analysis of the GRIND descriptors using the experimental Ki-value for 21 of the competitive inhibitors (r2=0.77, q2=0.60). The model was externally validated using 12 compounds and predicted 11 out of 12 of the Ki-values within 0.5 log units. The discriminant model will be useful in screening for CYP2C9 inhibitors from large compound collections. The 3D-QSAR model will be used during lead optimization to avoid chemistry that result in inhibition of CYP2C9.


Drug Metabolism and Disposition | 2014

Functional ATP-Binding Cassette Drug Efflux Transporters in Isolated Human and Rat Hepatocytes Significantly Affect Assessment of Drug Disposition

Patrik Lundquist; Gunilla Englund; Cristine Skogastierna; Johan Lööf; Jenny Johansson; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson

Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp–mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.


Drug Metabolism and Disposition | 2014

The Impact of Solute Carrier (SLC) Drug Uptake Transporter Loss in Human and Rat Cryopreserved Hepatocytes on Clearance Predictions

Patrik Lundquist; Johan Lööf; Anna-Karin Sohlenius-Sternbeck; E. Floby; Jenny Johansson; Johan Bylund; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson

Cryopreserved hepatocytes are often used as a convenient tool in studies of hepatic drug metabolism and disposition. In this study, the expression and activity of drug transporters in human and rat fresh and cryopreserved hepatocytes was investigated. In human cryopreserved hepatocytes, Western blot analysis indicated that protein expression of the drug uptake transporters [human Na+-taurocholate cotransporting polypeptide (NTCP), human organic anion transporting polypeptides (OATPs), human organic anion transporters, and human organic cation transporters (OCTs)] was considerably reduced compared with liver tissue. In rat cryopreserved cells, the same trend was observed but to a lesser extent. Several rat transporters were reduced as a result of both isolation and cryopreservation procedures. Immunofluorescence showed that a large portion of remaining human OATP1B1 and OATP1B3 transporters were internalized in human cryopreserved hepatocytes. Measuring uptake activity using known substrates of OATPs, OCTs, and NTCP showed decreased activity in cryopreserved as compared with fresh hepatocytes in both species. The reduced uptake in cryopreserved hepatocytes limited the in vitro metabolism of several AstraZeneca compounds. A retrospective analysis of clearance predictions of AstraZeneca compounds suggested systematic lower clearance predicted using metabolic stability data from human cryopreserved hepatocytes compared with human liver microsomes. This observation is consistent with a loss of drug uptake transporters in cryopreserved hepatocytes. In contrast, the predicted metabolic clearance from fresh rat hepatocytes was consistently higher than those predicted from liver microsomes, consistent with retention of uptake transporters. The uptake transporters, which are decreased in cryopreserved hepatocytes, may be rate-limiting for the metabolism of the compounds and thus be one explanation for underpredictions of in vivo metabolic clearance from cryopreserved hepatocytes.


Drug Metabolism and Disposition | 2014

Cytochrome P450 Inhibitory Properties of Common Efflux Transporter Inhibitors

Gunilla Englund; Patrik Lundquist; Cristine Skogastierna; Jenny Johansson; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson; Denis Projean

Drug transporter inhibitors are important tools to elucidate the contribution of transporters to drug disposition both in vitro and in vivo. These inhibitors are often unselective and affect several transporters as well as drug metabolizing enzymes, which can make experimental results difficult to interpret with confidence. We therefore tested 14 commonly used P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug-resistance associated protein (MRP) inhibitors as inhibitors of cytochrome P450 (P450) enzyme activities using recombinant enzymes. A subset of P-gp and/or CYP3A inhibitors were selected (cyclosporin A, elacridar, ketoconazole, quinidine, reserpine, and tacrolimus) for a comparison of P450 inhibition in human microsomes and hepatocytes. Most P-gp inhibitors showed CYP3A4 inhibition, with potencies often in a similar range as their P-gp inhibition, as well as less potent CYP2C19 inhibition. Other P450 enzymes were not strongly inhibited except a few cases of CYP2D6 inhibition. MRP and BCRP inhibitors showed limited P450 inhibition. Some inhibitors showed less P450 inhibition in human hepatocytes than human liver microsomes, for example, elacridar, probably due to differences in binding, permeability limitations, or active, P-gp mediated efflux of the inhibitor from the hepatocytes. Quinidine was a potent P450 inhibitor in hepatocytes but only showed weak inhibition in microsomes. Quinidine shows an extensive cellular uptake, which may potentiate intracellular P450 inhibition. Elacridar, described as a potent and selective P-gp inhibitor, displayed modest P450 inhibition in this study and is thus a useful model inhibitor to define the role of P-gp in drug disposition without interference with other processes.


Drug Metabolism and Disposition | 2014

Prediction of In Vivo Rat Biliary Drug Clearance from an In Vitro Hepatocyte Efflux Model

Patrik Lundquist; Johan Lööf; Urban Fagerholm; Ingemo Sjögren; Jenny Johansson; Sveinn Briem; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson

Well-established techniques are available to predict in vivo hepatic uptake and metabolism from in vitro data, but predictive models for biliary clearance remain elusive. Several studies have verified the expression and activity of ATP-binding cassette (ABC) efflux transporters central to biliary clearance in freshly isolated rat hepatocytes, raising the possibility of predicting biliary clearance from in vitro efflux measurements. In the present study, short-term plated rat hepatocytes were evaluated as a model to predict biliary clearance from in vitro efflux measurements before major changes in transporter expression known to take place in long-term hepatocyte cultures. The short-term cultures were carefully characterized for their uptake and metabolic properties using a set of model compounds. In vitro efflux was studied using digoxin, fexofenadine, napsagatran, and rosuvastatin, representing compounds with over 100-fold differences in efflux rates in vitro and 60-fold difference in measured in vivo biliary clearance. The predicted biliary clearances from short-term plated rat hepatocytes were within 2-fold of measured in vivo values. As in vitro efflux includes both basolateral and canalicular effluxes, pronounced basolateral efflux may introduce errors in predictions for some compounds. In addition, in vitro rat hepatocyte uptake rates corrected for simultaneous efflux predicted rat in vivo hepatic clearance of the biliary cleared compounds with less than 2-fold error. Short-term plated hepatocytes could thus be used to quantify hepatocyte uptake, metabolism, and efflux of compounds and considerably improve the prediction of hepatic clearance, especially for compounds with a large biliary clearance component.


Journal of Pharmacology and Experimental Therapeutics | 2016

Integrated Strategy for Use of Positron Emission Tomography in Nonhuman Primates to Confirm Multitarget Occupancy of Novel Psychotropic Drugs: An Example with AZD3676.

Katarina Varnäs; Anders Juréus; Peter Johnström; Charlotte Ahlgren; Pär Schött; Magnus Schou; Susanne Gruber; Eva Jerning; Jonas Malmborg; Christer Halldin; Lovisa Afzelius; Lars Farde

Positron emission tomography (PET) is widely applied in central nervous system (CNS) drug development for assessment of target engagement in vivo. As the majority of PET investigations have addressed drug interaction at a single binding site, findings of multitarget engagement have been less frequently reported and have often been inconsistent with results obtained in vitro. AZD3676 [N,N-dimethyl-7-(4-(2-(pyridin-2-yl)ethyl)piperazin-1-yl) benzofuran-2-carboxamide] is a novel combined serotonin (5-hydroxytryptamine) 5-HT1A and 5-HT1B receptor antagonist that was developed for the treatment of cognitive impairment in Alzheimer’s disease. Here, we evaluated the properties of AZD3676 as a CNS drug by combining in vitro and ex vivo radioligand binding techniques, behavioral pharmacology in rodents, and PET imaging in nonhuman primates. Target engagement in the nonhuman primate brain was assessed in PET studies by determination of drug-induced occupancy using receptor-selective radioligands. AZD3676 showed preclinical properties consistent with CNS drug potential, including nanomolar receptor affinity and efficacy in rodent models of learning and memory. In PET studies of the monkey brain, AZD3676 inhibited radioligand binding in a dose-dependent manner with similar affinity at both receptors. The equally high affinity at 5-HT1A and 5-HT1B receptors as determined in vivo was not predicted from corresponding estimates obtained in vitro, suggesting more than 10-fold selectivity for 5-HT1A versus 5-HT1B receptors. These findings support the further integrated use of PET for confirmation of multitarget occupancy of CNS drugs. Importantly, earlier introduction of PET studies in nonhuman primates may reduce future development costs and the requirement for animal experiments in preclinical CNS drug development programs.

Collaboration


Dive into the Lovisa Afzelius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge