Patrik Lundquist
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrik Lundquist.
Advanced Drug Delivery Reviews | 2016
Patrik Lundquist; Per Artursson
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Drug Metabolism and Disposition | 2014
Patrik Lundquist; Gunilla Englund; Cristine Skogastierna; Johan Lööf; Jenny Johansson; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson
Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp–mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
Trends in Pharmacological Sciences | 2015
Pä r Matsson; Luca A. Fenu; Patrik Lundquist; Jacek R. Wiśniewski; Manfred Kansy; Per Artursson
The conventional model of drug permeability has recently been challenged. An alternative model proposes that transporter-mediated flux is the sole mechanism of cellular drug permeation, instead of existing in parallel with passive transmembrane diffusion. We examined a central assumption of this alternative hypothesis; namely, that transporters can give rise to experimental observations that would typically be explained with passive transmembrane diffusion. Using systems-biology simulations based on available transporter kinetics and proteomic expression data, we found that such observations are possible in the absence of transmembrane diffusion, but only under very specific conditions that rarely or never occur for known human drug transporters.
Drug Metabolism and Disposition | 2014
Patrik Lundquist; Johan Lööf; Anna-Karin Sohlenius-Sternbeck; E. Floby; Jenny Johansson; Johan Bylund; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson
Cryopreserved hepatocytes are often used as a convenient tool in studies of hepatic drug metabolism and disposition. In this study, the expression and activity of drug transporters in human and rat fresh and cryopreserved hepatocytes was investigated. In human cryopreserved hepatocytes, Western blot analysis indicated that protein expression of the drug uptake transporters [human Na+-taurocholate cotransporting polypeptide (NTCP), human organic anion transporting polypeptides (OATPs), human organic anion transporters, and human organic cation transporters (OCTs)] was considerably reduced compared with liver tissue. In rat cryopreserved cells, the same trend was observed but to a lesser extent. Several rat transporters were reduced as a result of both isolation and cryopreservation procedures. Immunofluorescence showed that a large portion of remaining human OATP1B1 and OATP1B3 transporters were internalized in human cryopreserved hepatocytes. Measuring uptake activity using known substrates of OATPs, OCTs, and NTCP showed decreased activity in cryopreserved as compared with fresh hepatocytes in both species. The reduced uptake in cryopreserved hepatocytes limited the in vitro metabolism of several AstraZeneca compounds. A retrospective analysis of clearance predictions of AstraZeneca compounds suggested systematic lower clearance predicted using metabolic stability data from human cryopreserved hepatocytes compared with human liver microsomes. This observation is consistent with a loss of drug uptake transporters in cryopreserved hepatocytes. In contrast, the predicted metabolic clearance from fresh rat hepatocytes was consistently higher than those predicted from liver microsomes, consistent with retention of uptake transporters. The uptake transporters, which are decreased in cryopreserved hepatocytes, may be rate-limiting for the metabolism of the compounds and thus be one explanation for underpredictions of in vivo metabolic clearance from cryopreserved hepatocytes.
Journal of Pharmaceutical Sciences | 2016
Magnus Olander; Jacek R. Wiśniewski; Pär Matsson; Patrik Lundquist; Per Artursson
Caco-2 cells are widely used in studies of intestinal cell physiology and drug transport. Here, the global proteome of filter-grown Caco-2 cells was quantified using the total protein approach and compared with the human colon and jejunum proteomes. In total, 8096 proteins were identified. In-depth analysis of proteins defining enterocyte differentiation-including brush-border hydrolases, integrins, and adherens and tight junctions-gave near-complete coverage of the expected proteins. Three hundred twenty-seven absorption, distribution, metabolism and excretion proteins were identified, including 112 solute carriers and 20 ATP-binding cassette transporters. OATP2B1 levels were 16-fold higher in Caco-2 cells than in jejunum. To investigate the impact of this difference on in vitro-in vivo extrapolations, we studied the uptake kinetics of the OATP2B1 substrate pitavastatin in Caco-2 monolayers, and found that the contribution of OATP2B1 was 60%-70% at clinically relevant intestinal concentrations. Pitavastatin kinetics was combined with transporter concentrations to model the contribution of active transport and membrane permeation in the jejunum. The lower OATP2B1 expression in jejunum led to a considerably lower transporter contribution (<5%), suggesting that transmembrane diffusion dominates pitavastatin absorption in vivo. In conclusion, we present the first in-depth quantification of the filter-grown Caco-2 proteome. We also demonstrate the crucial importance of considering transporter expression levels for correct interpretation of drug transport routes across the human intestine.
Drug Metabolism and Disposition | 2014
Gunilla Englund; Patrik Lundquist; Cristine Skogastierna; Jenny Johansson; Janet Hoogstraate; Lovisa Afzelius; Tommy B. Andersson; Denis Projean
Drug transporter inhibitors are important tools to elucidate the contribution of transporters to drug disposition both in vitro and in vivo. These inhibitors are often unselective and affect several transporters as well as drug metabolizing enzymes, which can make experimental results difficult to interpret with confidence. We therefore tested 14 commonly used P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug-resistance associated protein (MRP) inhibitors as inhibitors of cytochrome P450 (P450) enzyme activities using recombinant enzymes. A subset of P-gp and/or CYP3A inhibitors were selected (cyclosporin A, elacridar, ketoconazole, quinidine, reserpine, and tacrolimus) for a comparison of P450 inhibition in human microsomes and hepatocytes. Most P-gp inhibitors showed CYP3A4 inhibition, with potencies often in a similar range as their P-gp inhibition, as well as less potent CYP2C19 inhibition. Other P450 enzymes were not strongly inhibited except a few cases of CYP2D6 inhibition. MRP and BCRP inhibitors showed limited P450 inhibition. Some inhibitors showed less P450 inhibition in human hepatocytes than human liver microsomes, for example, elacridar, probably due to differences in binding, permeability limitations, or active, P-gp mediated efflux of the inhibitor from the hepatocytes. Quinidine was a potent P450 inhibitor in hepatocytes but only showed weak inhibition in microsomes. Quinidine shows an extensive cellular uptake, which may potentiate intracellular P450 inhibition. Elacridar, described as a potent and selective P-gp inhibitor, displayed modest P450 inhibition in this study and is thus a useful model inhibitor to define the role of P-gp in drug disposition without interference with other processes.
Trends in Pharmacological Sciences | 2016
Pär Matsson; Patrik Lundquist; Per Artursson
We recently published an analysis in Trends in Pharmacological Sciences, assessing the impact of transporters on cellular drug permeability based on quantitative data for drug transport kinetics and transporter expression levels [1,2]. Our aim was to explore what properties transporters would need to have if – as hypothesized in a series of publications over the past few years – drug diffusion across the lipid parts of cell membranes is negligible, and transporter-mediated processes explain all experimental observations of cellular drug flux.
Trends in Pharmacological Sciences | 2015
Pär Matsson; Luca A. Fenu; Patrik Lundquist; Jacek R. Wiśniewski; Manfred Kansy; Per Artursson
We recently published an analysis of the limits of carrier-mediated drug transport and whether transporters alone can explain experimental observations that are typically rationalized by drug diffusion through the lipid portions of cell membranes [1]. We found that carrier-mediated transport rates can be high enough to explain observed rates for high-permeability drugs across monolayers of Caco-2 cells, but only if the drugs are substrates of transporters with extreme capacity or if transport is mediated by several medium-to-high-capacity transporters working in parallel.
Xenobiotica | 2013
Sanja Juric; Patrik Lundquist; Yin Hu; Anna Juréus; Anna-Karin Sohlenius-Sternbeck
Abstract 1. Human hepatocytes that had been cold-preserved in SureTranTM matrix (Abcellute Ltd, Cardiff, UK) were used for studies on cell viability, cytochrome P450 (CYP) 3A4, 2B6 and 1A2 induction and hepatic drug transporters. It has recently been shown that basal CYP activities are maintained in cold-preserved hepatocytes (Palmgren et al., 2012). 2. After 5 d of cold preservation, the viability was still more than 70%, and after 8 d it was around 60%. In hepatocytes that had been cold-preserved for 3 d, the activity of CYP3A4 was induced around 15-fold upon treatment with 8 µM rifampicin for 72 h. For CYP2B6, the activity was induced 4- to 16-fold in hepatocytes that had been cold-preserved for 3 d and thereafter treated with 1 mM phenobarbital for 72 h. The activity of CYP1A2 was low and close to the limit of detection in non-treated cells that had been cold-preserved for up to 3 d, while the activity increased in cells treated with 0.3–25 µM β-naphthoflavone for 72 h. CYP3A4, 2B6 and 1A2 mRNA levels were only determined with hepatocytes from one donor and increased upon treatment with the inducers. 3. Hepatic uptakes of estrone-3-sulfate, taurocholate, ipratropium and rosuvastatin were stable in human hepatocytes that had been cold-preserved for up to 2 d. 4. In summary, cold-preserved human hepatocytes demonstrate retained viability and can advantageously be used for in vitro induction studies and for studies of hepatic uptake transporters.
Journal of Pharmaceutical Sciences | 2017
Maria Karlgren; Ivailo Simoff; Maria Backlund; Christine Wegler; Markus Keiser; Niklas Handin; Janett Müller; Patrik Lundquist; Anne-Christine Jareborg; Stefan Oswald; Per Artursson