Luan M. Streb
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luan M. Streb.
Nature Genetics | 2000
Neena B. Haider; Samuel G. Jacobson; Artur V. Cideciyan; Ruth E. Swiderski; Luan M. Streb; Charles Searby; Gretel Beck; Robin R. Hockey; David B. Hanna; Susan W. Gorman; David Duhl; Rivka Carmi; Jean Bennett; Richard G. Weleber; Gerald A. Fishman; Alan F. Wright; Edwin M. Stone; Val C. Sheffield
Hereditary human retinal degenerative diseases usually affect the mature photoreceptor topography by reducing the number of cells through apoptosis, resulting in loss of visual function. Only one inherited retinal disease, the enhanced S-cone syndrome (ESCS), manifests a gain in function of photoreceptors. ESCS is an autosomal recessive retinopathy in which patients have an increased sensitivity to blue light; perception of blue light is mediated by what is normally the least populous cone photoreceptor subtype, the S (short wavelength, blue) cones. People with ESCS also suffer visual loss, with night blindness occurring from early in life, varying degrees of L (long, red)- and M (middle, green)-cone vision, and retinal degeneration. The altered ratio of S- to L/M-cone photoreceptor sensitivity in ESCS may be due to abnormal cone cell fate determination during retinal development. In 94% of a cohort of ESCS probands we found mutations in NR2E3 (also known as PNR), which encodes a retinal nuclear receptor recently discovered to be a ligand-dependent transcription factor. Expression of NR2E3 was limited to the outer nuclear layer of the human retina. Our results suggest that NR2E3 has a role in determining photoreceptor phenotype during human retinogenesis.
Nature Genetics | 2002
Kirk Mykytyn; Darryl Y. Nishimura; Charles Searby; Mythreyi Shastri; Hsan Jan Yen; John S. Beck; Terry A. Braun; Luan M. Streb; Alberto S. Cornier; Gerald F. Cox; Anne B. Fulton; Rivka Carmi; Guven Luleci; Settara C. Chandrasekharappa; Francis S. Collins; Samuel G. Jacobson; John R. Heckenlively; Richard G. Weleber; Edwin M. Stone; Val C. Sheffield
Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13–p12 (BBS3), 15q22.3–q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.
Nature Genetics | 1998
Edwin M. Stone; Andrew R. Webster; Kimberlie Vandenburgh; Luan M. Streb; Robin R. Hockey; Andrew J. Lotery; Val C. Sheffield
Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration
eLife | 2013
Budd A. Tucker; Robert F. Mullins; Luan M. Streb; Kristin R. Anfinson; Mari Eyestone; Emily E. Kaalberg; Megan Riker; Arlene V. Drack; Terry A. Braun; Edwin M. Stone
Next-generation and Sanger sequencing were combined to identify disease-causing USH2A mutations in an adult patient with autosomal recessive RP. Induced pluripotent stem cells (iPSCs), generated from the patient’s keratinocytes, were differentiated into multi-layer eyecup-like structures with features of human retinal precursor cells. The inner layer of the eyecups contained photoreceptor precursor cells that expressed photoreceptor markers and exhibited axonemes and basal bodies characteristic of outer segments. Analysis of the USH2A transcripts of these cells revealed that one of the patient’s mutations causes exonification of intron 40, a translation frameshift and a premature stop codon. Western blotting revealed upregulation of GRP78 and GRP94, suggesting that the patient’s other USH2A variant (Arg4192His) causes disease through protein misfolding and ER stress. Transplantation into 4-day-old immunodeficient Crb1−/− mice resulted in the formation of morphologically and immunohistochemically recognizable photoreceptor cells, suggesting that the mutations in this patient act via post-developmental photoreceptor degeneration. DOI: http://dx.doi.org/10.7554/eLife.00824.001
Retina-the Journal of Retinal and Vitreous Diseases | 2001
Mina Chung; Kean T. Oh; Luan M. Streb; Alan E. Kimura; Edwin M. Stone
Purpose To review cases of Best disease associated with subretinal hemorrhage to better understand their long-term visual prognosis. Subject and Methods Patients were identified through the photographic file database at the University of Iowa. Seventy-eight files of patients with clinical evidence of Best disease were reviewed and 12 patients (14 eyes) were identified with subretinal hemorrhage. The visual acuity and clinical course were reviewed in all of these patients when possible. Three patients demonstrated subretinal hemorrhage on their last follow-up visit. Nine patients (11 eyes) were followed through to resolution of subretinal hemorrhage. Eight patients were screened on the VMD2 gene and all were found to have disease-causing sequence variations. Results All patients noted visual loss at presentation with subretinal hemorrhage (median 20/100; range 20/30–20/400). The median final visual acuity in the 11 eyes with follow-up was 20/50 (20/16–20/400 range). Ten of 11 eyes demonstrated improvement of vision with 9/11 having a final visual acuity of 20/50 or better. Conclusion The natural history of patients with Best disease with subretinal hemorrhage and moderate visual loss is relatively good. The presence of subretinal hemorrhage in Best disease may be related to mild, incidental trauma.
Ophthalmology | 2016
Kent W. Small; Adam P. DeLuca; S. Scott Whitmore; Thomas Rosenberg; Rosemary Silva-Garcia; Nitin Udar; Bernard Puech; Charles A. Garcia; Thomas A. Rice; Gerald A. Fishman; Elise Héon; James C. Folk; Luan M. Streb; Christine M. Haas; Luke A. Wiley; Todd E. Scheetz; John H. Fingert; Robert F. Mullins; Budd A. Tucker; Edwin M. Stone
PURPOSE To identify specific mutations causing North Carolina macular dystrophy (NCMD). DESIGN Whole-genome sequencing coupled with reverse transcription polymerase chain reaction (RT-PCR) analysis of gene expression in human retinal cells. PARTICIPANTS A total of 141 members of 12 families with NCMD and 261 unrelated control individuals. METHODS Genome sequencing was performed on 8 affected individuals from 3 families affected with chromosome 6-linked NCMD (MCDR1) and 2 individuals affected with chromosome 5-linked NCMD (MCDR3). Variants observed in the MCDR1 locus with frequencies <1% in published databases were confirmed using Sanger sequencing. Confirmed variants absent from all published databases were sought in 8 additional MCDR1 families and 261 controls. The RT-PCR analysis of selected genes was performed in stem cell-derived human retinal cells. MAIN OUTCOME MEASURES Co-segregation of rare genetic variants with disease phenotype. RESULTS Five sequenced individuals with MCDR1-linked NCMD shared a haplotype of 14 rare variants spanning 1 Mb of the disease-causing allele. One of these variants (V1) was absent from all published databases and all 261 controls, but was found in 5 additional NCMD kindreds. This variant lies in a DNase 1 hypersensitivity site (DHS) upstream of both the PRDM13 and CCNC genes. Sanger sequencing of 1 kb centered on V1 was performed in the remaining 4 NCMD probands, and 2 additional novel single nucleotide variants (V2 in 3 families and V3 in 1 family) were identified in the DHS within 134 bp of the location of V1. A complete duplication of the PRDM13 gene was also discovered in a single family (V4). The RT-PCR analysis of PRDM13 expression in developing retinal cells revealed marked developmental regulation. Next-generation sequencing of 2 individuals with MCDR3-linked NCMD revealed a 900-kb duplication that included the entire IRX1 gene (V5). The 5 mutations V1 to V5 segregated perfectly in the 102 affected and 39 unaffected members of the 12 NCMD families. CONCLUSIONS We identified 5 rare mutations, each capable of arresting human macular development. Four of these strongly implicate the involvement of PRDM13 in macular development, whereas the pathophysiologic mechanism of the fifth remains unknown but may involve the developmental dysregulation of IRX1.
Eye | 2006
Richard C. Allen; Steve R. Russell; Luan M. Streb; A. Alsheikheh; Edwin M. Stone
PurposeTo determine the molecular pathology and clinical severity of two pedigrees with a history of early retinal detachment and peripheral retinal vascular abnormalities.DesignLongitudinal cohort study.MethodsA longitudinal clinical study and DNA analysis was performed on 49 family members of two pedigrees.ResultsNine individuals were found to be hemizygous for a mutation at codon 112 (Gly112Glu) of the Norrie disease protein (NDP) in one pedigree. Significant phenotypic heterogeneity was found. The proband presented with a unilateral subtotal retinal detachment at the age of 3 years, and subsequently developed a slowly progressive tractional retinal detachment involving the macula in the contralateral eye at the age of 4 years. One individual had only mild peripheral retinal pigmentary changes with normal vision at the age of 79 years. The remaining seven individuals had varying degrees of peripheral retinal vascular abnormalities and anterior segment findings. Seven affected members of a second pedigree affected by a previously reported mutation, Arg74Cys, also demonstrated wide ocular phenotypic variation.ConclusionA novel mutation (Gly112Glu), which represents the most carboxy located, NDP mutation reported, results in significant phenotypic heterogeneity. These data support the contention that the spectrum of ocular disease severity associated with these NDP mutations is broad. Use of terms that characterize this entity by phenotypic appearance, such as familial exudative vitreoretinopathy, do not adequately communicate the potential spectrum of severity of this disorder to affected or carrier family members.
Translational Research | 2015
Budd A. Tucker; Cathryn M. Cranston; Kristin A. Anfinson; Suruchi Shrestha; Luan M. Streb; Alejandro Leon; Robert F. Mullins; Edwin M. Stone
Retinal pigment epithelium-specific 65 kDa (RPE65)-associated Leber congenital amaurosis is an autosomal recessive disease that results in reduced visual acuity and night blindness beginning at birth. It is one of the few retinal degenerative disorders for which promising clinical gene transfer trials are currently underway. However, the ability to enroll patients in a gene augmentation trial is dependent on the identification of 2 bona fide disease-causing mutations, and there are some patients with the phenotype of RPE65-associated disease who might benefit from gene transfer but are ineligible because 2 disease-causing genetic variations have not yet been identified. Some such patients have novel mutations in RPE65 for which pathogenicity is difficult to confirm. The goal of this study was to determine if an intronic mutation identified in a 2-year-old patient with presumed RPE65-associated disease was truly pathogenic and grounds for inclusion in a clinical gene augmentation trial. Sequencing of the RPE65 gene revealed 2 mutations: (1) a previously identified disease-causing exonic leucine-to-proline mutation (L408P) and (2) a novel single point mutation in intron 3 (IVS3-11) resulting in an A>G change. RT-PCR analysis using RNA extracted from control human donor eye-derived primary RPE, control iPSC-RPE cells, and proband iPSC-RPE cells revealed that the identified IVS3-11 variation caused a splicing defect that resulted in a frameshift and insertion of a premature stop codon. In this study, we demonstrate how patient-specific iPSCs can be used to confirm pathogenicity of unknown mutations, which can enable positive clinical outcomes.
British Journal of Ophthalmology | 2004
K. T. Oh; Dawn M. Oh; Richard G. Weleber; Edwin M. Stone; A. Parikh; J. White; K. A. DeBoer-Shields; Luan M. Streb; C. Vallar
Aim: To describe the clinical characteristics and disease course of a large family with retinitis pigmentosa (RP) from an Arg135Leu change in rhodopsin. Methods: 29 patients in this family were evaluated. Goldmann visual fields were performed on 14 affected individuals, Ganzfeld electroretinography (ERG) on eight individuals (11–56 years), and blood samples collected on 10 individuals (11–58 years). Patient visual field data were compared with previously reported patients with different rhodopsin mutations using linear regression. Results: An Arg135Leu mutation was identified in rhodopsin. Distinct stages of clinical evolution were identified for this family ranging from normal, white dots, classic bone spicules and, finally, ending with extensive retinal pigment epithelium (RPE) atrophy. 9/16 patients over the age of 20 years also demonstrated marked macular atrophy. All patients who underwent full field ERG testing demonstrated non-recordable ERGs. The overall regression model comparing solid angles of visual fields from patients with rhodopsin mutations (Pro23His, Pro347Ala, Arg135Leu) shows significant effects for age (p = 0.0005), mutation (p = 0.0014), and interaction between age and mutation (p = 0.018) with an R2 of 0.407. Conclusions: An Arg135Leu change in rhodopsin results in a severe form of RP that evolves through various fundus appearances that include white dots early in life and classic appearing RP later. This transmembrane change in rhodopsin proves to be more severe than in a family with an intradiscal change and a family with a cytoplasmic change.
Retinal Cases & Brief Reports | 2007
Simge Bozbeyoglu; Gerald A. Fishman; Edwin M. Stone; Ian M. MacDonald; Luan M. Streb
PURPOSE To describe a de novo gene mutation in a female patient with clinically characteristic findings of choroideremia (CHM). METHODS Determination of best-corrected visual acuity, fundus examination, visual field analysis, and electroretinography were performed on a female patient with an advanced CHM phenotype. Blood samples were obtained from the patient and both her parents, and direct genomic sequencing for DNA analysis was performed on the blood samples. RESULTS A single base-pair sequence change was identified in codon 293 in exon 7 (R293X) of the CHM gene in the proband. This mutation was not found to occur in her clinically unaffected parents. CONCLUSION These findings document that a de novo point mutation should be considered when an isolated female family member is found to have CHM.