Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luana Beatriz Vitoretti is active.

Publication


Featured researches published by Luana Beatriz Vitoretti.


European Journal of Pharmacology | 2012

Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor

A. Ribeiro; V. Ferraz-de-Paula; M.L. Pinheiro; Luana Beatriz Vitoretti; Domenica P. Mariano-Souza; W.M. Quinteiro-Filho; Adriana T. Akamine; Vinicius Izidio de Almeida; João Quevedo; Felipe Dal-Pizzol; Jaime Eduardo Cecílio Hallak; Antonio Waldo Zuardi; José Alexandre S. Crippa; João Palermo-Neto

Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.


Shock | 2013

Protective effect of estradiol on acute lung inflammation induced by an intestinal ischemic insult is dependent on nitric oxide.

Ana Cristina Breithaupt-Faloppa; Evelyn Thais Fantozzi; M. M. Assis-Ramos; Luana Beatriz Vitoretti; G. K. Couto; L. V. Rossoni; Ricardo Martins Oliveira-Filho; Bernardo Boris Vargaftig; Wothan Tavares-de-Lima

ABSTRACT Introduction: It has been shown that the innate immune system mediates acute lung inflammation triggered by intestinal trauma. Sexual dimorphism modulates the profile of TH1 and TH2 lymphocytes, and accordingly sex hormones may modulate acute lung inflammation by intestinal ischemia/reperfusion (I/R). Studies indicate that female rats are relatively resistant to organ injury caused by hemorrhagic shock and that the gut of female is more resistant than that of the male to deleterious effects of ischemic injury. At the present study, we investigated the effect of estradiol (E2) on the lung inflammation after intestinal I/R and its interaction with the nitric oxide (NO) pathway. Methods: Anesthetized female rats submitted or not to 7 days ovariectomy (OVx) were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2 h of reperfusion. Groups of rats were treated with E2 (17&bgr;-estradiol, 280 &mgr;g/kg, s.c.) 24 h before ischemia and/or with the nonselective NO synthase inhibitor L-NAME (N&ohgr;-nitro-L-arginine methyl ester hydrochloride) (5 mg/kg, i.v.). In a parallel set of experiments, the selective NO synthase inhibitor, aminoguanidine (50 mg/kg i.v.), was given 1 h before ischemia. In all groups, lung vascular permeability (LVP) was assessed using the Evans blue dye extravasation method, neutrophil recruitment to the tissues by the standard myeloperoxidase (MPO) method, and endothelial NO synthase (eNOS) protein expression by Western blot. Results: In OVx rats, LVP and MPO were increased after intestinal I/R as compared with intact controls. Estradiol reverted the LVP, but not MPO. Aminoguanidine reduced LVP in OVx rats. The E2 protective effect on LVP was abolished by L-NAME; moreover, an increase in LVP even when compared with OVx rats treated only with L-NAME was observed. In addition, lung eNOS protein expression was reduced in OVx-I/R rats in comparison to intact controls and the E2 inhibited this effect. Conclusions: Estradiol treatment is able to reduce lung inflammation due to intestinal I/R, but with the concomitant blockade of NOS activity, this effect is abolished. Nitric oxide probably reduces the vascular deleterious effects of intestinal I/R, and E2 pretreatment reduces lung inflammation after intestinal I/R and exerts these effects by modulating eNOS protein expression in the lungs.


Shock | 2009

Nitric oxide mediates lung vascular permeability and lymph-borne IL-6 after an intestinal ischemic insult.

Ana Cristina Breithaupt-Faloppa; Luana Beatriz Vitoretti; Fernando Rodrigues Coelho; Adriana Lino dos Santos Franco; Helori Vanni Domingos; Lia Siguemi Sudo-Hayashi; Ricardo Martins Oliveira-Filho; Wothan Tavares de Lima

Acute lung injury following intestinal I/R depends on neutrophil-endothelial cell interactions and on cytokines drained from the gut through the lymph. Among the mediators generated during I/R, increased serum levels of IL-6 and NO are also found and might be involved in acute lung injury. Once intestinal ischemia itself may be a factor of tissue injury, in this study, we investigated the presence of IL-6 in lymph after intestinal ischemia and its effects on human umbilical vein endothelial cells (HUVECs) detachment. The involvement of NO on the increase of lung and intestinal microvascular permeability and the lymph effects on HUVEC detachment were also studied. Upon anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2-h intestinal reperfusion. Rats were treated with the nonselective NO synthase (NOS) inhibitor l-NAME (N&ohgr;-nitro-l-arginine methyl ester) or with the selective inhibitor of iNOS aminoguanidine 1 h before superior mesenteric artery occlusion. Whereas treatment with l-NAME during ischemia increased both IL-6 levels in lymph and lung microvascular permeability, aminoguanidine restored the augmented intestinal plasma extravasation due to ischemia and did not induce IL-6 in lymph. On the other hand, IL-6 and lymph of intestinal I/R detached the HUVECs, whereas lymph of ischemic rats upon l-NAME treatment when incubated with anti-IL-6 prevented HUVEC detachment. It is shown that the intestinal ischemia itself is sufficient to increase intestinal microvascular permeability with involvement of iNOS activation. Intestinal ischemia and absence of constitutive NOS activity leading to additional intestinal stress both cause release of IL-6 and increase of lung microvascular permeability. Because anti-IL-6 prevented the endothelial cell injury caused by lymph at the ischemia period, the lymph-borne IL-6 might be involved with endothelial cell activation. At the reperfusion period, this cytokine does not seem to be modulated by NO.


Toxicology and Applied Pharmacology | 2014

Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring.

Marília Maiellaro; Matheus Correa-Costa; Luana Beatriz Vitoretti; João Antônio Gimenes Júnior; Niels Olsen Saraiva Câmara; Wothan Tavares-de-Lima; Sandra Helena Poliselli Farsky; Adriana Lino-dos-Santos-Franco

Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment.


PLOS ONE | 2015

Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

Cristiane Miranda da Silva; Mayara Peres Leal; Robson Alexandre Brochetti; Tarcio Teodoro Braga; Luana Beatriz Vitoretti; Niels Olsen Saraiva Câmara; Amilcar Sabino Damazo; Ana Paula Ligeiro-de-Oliveira; Maria Cristina Chavantes; Adriana Lino-dos-Santos-Franco

Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT) has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA), an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1%) or vehicle (distillated water) during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure). Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.


Immunopharmacology and Immunotoxicology | 2015

Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

A. Ribeiro; Vinicius Izidio de Almeida; Carolina Costola-de-Souza; V. Ferraz-de-Paula; M.L. Pinheiro; Luana Beatriz Vitoretti; João Antonio Gimenes-Júnior; A.T. Akamine; José Alexandre S. Crippa; Wothan Tavares-de-Lima; João Palermo-Neto

Abstract We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.


Journal of Surgical Research | 2012

Intestinal Lymph-Borne Factors Induce Lung Release of Inflammatory Mediators and Expression of Adhesion Molecules After an Intestinal Ischemic Insult

Ana Cristina Breithaupt-Faloppa; Luana Beatriz Vitoretti; Gabriela Cavriani; Adriana Lino-dos-Santos-Franco; Lia Siguemi Sudo-Hayashi; Ricardo Martins Oliveira-Filho; B. Boris Vargaftig; Wothan Tavares-de-Lima

BACKGROUND Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. MATERIAL AND METHODS Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. RESULTS Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1β, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB(4) and TXB(2) were found to be significantly increased. CONCLUSIONS These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R.


PLOS ONE | 2015

Human Tubal-Derived Mesenchymal Stromal Cells Associated with Low Level Laser Therapy Significantly Reduces Cigarette Smoke–Induced COPD in C57BL/6 mice

Jean Pierre Schatzmann Peron; Auriléia Aparecida de Brito; Mayra Pelatti; Wesley Nogueira Brandão; Luana Beatriz Vitoretti; Flavia Regina Greiffo; Elaine Silveira; Manuel Carneiro Oliveira-Junior; Mariangela Maluf; Lucila Evangelista; Silvio Halpern; Marcelo Nisenbaum; Paulo Marcelo Perin; Carlos Eduardo Czeresnia; Niels Olsen Saraiva Câmara; Flávio Aimbire; Rodolfo de Paula Vieira; Mayana Zatz; Ana Paula Ligeiro de Oliveira

Cigarette smoke-induced chronic obstructive pulmonary disease is a very debilitating disease, with a very high prevalence worldwide, which results in a expressive economic and social burden. Therefore, new therapeutic approaches to treat these patients are of unquestionable relevance. The use of mesenchymal stromal cells (MSCs) is an innovative and yet accessible approach for pulmonary acute and chronic diseases, mainly due to its important immunoregulatory, anti-fibrogenic, anti-apoptotic and pro-angiogenic. Besides, the use of adjuvant therapies, whose aim is to boost or synergize with their function should be tested. Low level laser (LLL) therapy is a relatively new and promising approach, with very low cost, no invasiveness and no side effects. Here, we aimed to study the effectiveness of human tube derived MSCs (htMSCs) cell therapy associated with a 30mW/3J—660 nm LLL irradiation in experimental cigarette smoke-induced chronic obstructive pulmonary disease. Thus, C57BL/6 mice were exposed to cigarette smoke for 75 days (twice a day) and all experiments were performed on day 76. Experimental groups receive htMSCS either intraperitoneally or intranasally and/or LLL irradiation either alone or in association. We show that co-therapy greatly reduces lung inflammation, lowering the cellular infiltrate and pro-inflammatory cytokine secretion (IL-1β, IL-6, TNF-α and KC), which were followed by decreased mucus production, collagen accumulation and tissue damage. These findings seemed to be secondary to the reduction of both NF-κB and NF-AT activation in lung tissues with a concomitant increase in IL-10. In summary, our data suggests that the concomitant use of MSCs + LLLT may be a promising therapeutic approach for lung inflammatory diseases as COPD.


Food and Chemical Toxicology | 2013

Formaldehyde inhalation reduces respiratory mechanics in a rat model with allergic lung inflammation by altering the nitric oxide/cyclooxygenase-derived products relationship.

Adriana Lino-dos-Santos-Franco; João Antonio Gimenes-Júnior; Ana Paula Ligeiro-de-Oliveira; Ana Cristina Breithaupt-Faloppa; Beatriz Golegã Acceturi; Luana Beatriz Vitoretti; Isabel Daufenback Machado; Ricardo Martins Oliveira-Filho; Sandra Helena Poliselli Farsky; Henrique T. Moriya; Wothan Tavares-de-Lima

Bronchial hyperresponsiveness is a hallmark of asthma and many factors modulate bronchoconstriction episodes. A potential correlation of formaldehyde (FA) inhalation and asthma has been observed; however, the exact role of FA remains controversial. We investigated the effects of FA inhalation on Ovalbumin (OVA) sensitisation using a parameter of respiratory mechanics. The involvement of nitric oxide (NO) and cyclooxygenase-derived products were also evaluated. The rats were submitted, or not, to FA inhalation (1%, 90 min/day, 3 days) and were OVA-sensitised and challenged 14 days later. Our data showed that previous FA exposure in allergic rats reduced bronchial responsiveness, respiratory resistance (Rrs) and elastance (Ers) to methacholine. FA exposure in allergic rats also increased the iNOS gene expression and reduced COX-1. L-NAME treatment exacerbated the bronchial hyporesponsiveness and did not modify the Ers and Rrs, while Indomethacin partially reversed all of the parameters studied. The L-NAME and Indomethacin treatments reduced leukotriene B₄ levels while they increased thromboxane B₂ and prostaglandin E₂. In conclusion, FA exposure prior to OVA sensitisation reduces the respiratory mechanics and the interaction of NO and PGE₂ may be representing a compensatory mechanism in order to protect the lung from bronchoconstriction effects.


Clinics | 2013

The putative role of ovary removal and progesterone when considering the effect of formaldehyde exposure on lung inflammation induced by ovalbumin.

Adriana Lino-dos-Santos-Franco; Renata Midori Amemiya; Ana Paula Ligeiro de Oliveira; Amilcar Sabino Damazo; Ana Cristina Breithaupt-Faloppa; Luana Beatriz Vitoretti; Beatriz Golegã Acceturi; Wothan Tavares-de-Lima

OBJECTIVE: Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation. METHOD: Ovariectomized rats and their matched controls were exposed to formaldehyde (1%, 3 days, 90 min/day) or vehicle, and immediately after exposure, the rats were sensitized to ovalbumin by a subcutaneous route. After 1 week, the rats received a booster by the same route, and after an additional week, the rats were challenged with ovalbumin (1%) by an aerosol route. The leukocyte numbers, interleukin-10 (IL-10) release, myeloperoxidase activity, vascular permeability, ex vivo tracheal reactivity to methacholine and mast cell degranulation were determined 24 h later. RESULTS: Our results showed that previous exposure to formaldehyde in allergic rats decreased lung cell recruitment, tracheal reactivity, myeloperoxidase activity, vascular permeability and mast cell degranulation while increasing IL-10 levels. Ovariectomy only caused an additional reduction in tracheal reactivity without changing the other parameters studied. Progesterone treatment reversed the effects of formaldehyde exposure on ex vivo tracheal reactivity, cell influx into the lungs and mast cell degranulation. CONCLUSION: In conclusion, our study revealed that formaldehyde and ovariectomy downregulated allergic lung inflammation by IL-10 release and mast cell degranulation. Progesterone treatment increased eosinophil recruitment and mast cell degranulation, which in turn may be responsible for tracheal hyperreactivity and allergic lung inflammation.

Collaboration


Dive into the Luana Beatriz Vitoretti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Paula Ligeiro de Oliveira

Universidade Federal do Vale do São Francisco

View shared research outputs
Top Co-Authors

Avatar

Flávio Aimbire

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge