Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luc Etcheverry is active.

Publication


Featured researches published by Luc Etcheverry.


Bioelectrochemistry | 2010

Marine aerobic biofilm as biocathode catalyst.

Benjamin Erable; Ilse Vandecandelaere; Marco Faimali; Marie-Line Délia; Luc Etcheverry; Peter Vandamme; Alain Bergel

Stainless steel electrodes were immersed in open seawater and polarized for some days at -200 mV vs. Ag/AgCl. The current increase indicated the formation of biofilms that catalysed the electrochemical reduction of oxygen. These wild, electrochemically active (EA) biofilms were scraped, resuspended in seawater and used as the inoculum in closed 0.5L electrochemical reactors. This procedure allowed marine biofilms that are able to catalyse oxygen reduction to be formed in small, closed small vessels for the first time. Potential polarisation during biofilm formation was required to obtain EA biofilms and the roughness of the surface favoured high current values. The low availability of nutrients was shown to be a main limitation. Using an open reactor continuously fed with filtered seawater multiplied the current density by a factor of around 20, up to 60 microA/cm(2), which was higher than the current density provided in open seawater by the initial wild biofilm. These high values were attributed to continuous feeding with the nutrients contained in seawater and to suppression of the indigenous microbial species that compete with EA strains in natural open environments. Pure isolates were extracted from the wild biofilms and checked for EA properties. Of more than thirty different species tested, only Winogradskyella poriferorum and Acinetobacter johsonii gave current densities of respectively 7% and 3% of the current obtained with the wild biofilm used as inoculum. Current densities obtained with pure cultures were lower than those obtained with wild biofilms. It is suspected that synergic effects occur in whole biofilms or/and that wild strains may be more efficient than the cultured isolates.


Energy and Environmental Science | 2012

Stainless steel is a promising electrode material for anodes of microbial fuel cells

Diana Pocaznoi; Amandine Calmet; Luc Etcheverry; Benjamin Erable; Alain Bergel

The abilities of carbon cloth, graphite plate and stainless steel to form microbial anodes were compared under identical conditions. Each electrode was polarised at −0.2 V vs. SCE in soil leachate and fed by successive additions of 20 mM acetate. Under these conditions, the maximum current densities provided were on average 33.7 A m−2 for carbon cloth, 20.6 A m−2 for stainless steel, and 9.5 A m−2 for flat graphite. The high current density obtained with carbon cloth was obviously influenced by the three-dimensional electrode structure. Nevertheless, a fair comparison between flat electrodes demonstrated the great interest of stainless steel. The comparison was even more in favour of stainless steel at higher potential values. At +0.1 V vs. SCE stainless steel provided up to 35 A m−2, while graphite did not exceed 11 A m−2. This was the first demonstration that stainless steel offers a very promising ability to form microbial anodes. The surface topography of the stainless steel did not significantly affect the current provided. Analysis of the voltammetry curves allowed two groups of electrode materials to be distinguished by their kinetics. The division into two well-defined kinetics groups proved to be appropriate for a wide range of microbial anodes described in the literature.


Bioresource Technology | 2008

Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.

Claire Dumas; Alfonso Mollica; Damien Feron; Régine Basséguy; Luc Etcheverry; Alain Bergel

A procedure was proposed to mimic marine microbial fuel cell (MFC) in liquid phase. A graphite anode and a stainless steel cathode which have been proven, separately, to be efficient in MFC were investigated. A closed anodic compartment was inoculated with sediments, filled with deoxygenated seawater and fed with milk to recover the sediments sulphide concentration. A stainless steel cathode, immersed in aerated seawater, used the marine biofilm formed on its surface to catalyze oxygen reduction. The cell implemented with a 0.02m(2)-graphite anode supplied around 0.10W/m(2) for 45 days. A power of 0.02W/m(2) was obtained after the anode replacement by a 0.06m(2)-stainless steel electrode. The cell lost its capacity to make a motor turn after one day of operation, but recovered its full efficiency after a few days in open circuit. The evolution of the kinetic properties of stainless steel was identified as responsible for the power limitation.


Energy and Environmental Science | 2015

Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction

Elise Blanchet; François Duquenne; Yan Rafrafi; Luc Etcheverry; Benjamin Erable; Alain Bergel

Microbial electrochemical reduction of CO2 was carried out under two different applied potentials, −0.36 V and −0.66 V vs. SHE, using a biological sludge as the inoculum. Both potentials were thermodynamically appropriate for converting CO2 to acetate but only −0.66 V enabled hydrogen evolution. No acetate production was observed at −0.36 V, while up to 244 ± 20 mg L−1 acetate was produced at −0.66 V vs. SHE. The same microbial inoculum implemented in gas–liquid contactors with H2 and CO2 gas supply led to acetate production of 2500 mg L−1. When a salt marsh sediment was used as the inoculum, no reduction was observed in the electrochemical reactors, while supplying H2 + CO2 gas led to formate and then acetate production. Finally, pure cultures of Sporomusa ovata grown under H2 and CO2 gas feeding showed acetate production of up to 2904 mg L−1, higher than those reported so far in the literature for S. ovata implemented in bioelectrochemical processes. Unexpected ethanol production of up to 1411 mg L−1 was also observed. All these experimental data confirm that hydrogen produced on the cathode by water electrolysis is an essential mediator in the microbial electrochemical reduction of CO2. Implementing homoacetogenic microbial species in purposely designed gas–liquid biocontactors should now be considered as a relevant strategy for developing CO2 conversion.


Biofouling | 2011

From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater

Benjamin Erable; Luc Etcheverry; Alain Bergel

The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a “short-circuited” microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.


Bioresource Technology | 2013

Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes

Benjamin Erable; Rémy Lacroix; Luc Etcheverry; Damien Feron; Marie-Line Délia; Alain Bergel

Here is presented a new design of a floating marine MFC in which the inter-electrode space is constant. This design allows the generation of stable current for applications in environments where the water column is large or subject to fluctuations such as tidal effects. The operation of the first prototype was validated by running a continuous test campaign for 6months. Performance in terms of electricity generation was already equivalent to what is conventionally reported in the literature with basic benthic MFCs despite the identification of a large internal resistance in the proposed design of the floating system. This high internal resistance is mainly explained by poor positioning of the membrane separating the anode compartment from the open seawater. The future objectives are to achieve more consistent performance and a second-generation prototype is now being developed, mainly incorporating a modification of the separator position and a stainless steel biocathode with a large bioavailable surface.


Bioresource Technology | 2012

Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required

Diana Pocaznoi; Benjamin Erable; Luc Etcheverry; Marie-Line Délia; Alain Bergel

Microbial anodes were formed from compost leachate on carbon cloth electrodes. The biofilms formed at the surface of electrodes kept at open circuit contained microorganisms that switched their metabolism towards electrode respiration in response to a few minutes of polarisation. When polarisation at -0.2 V/SCE (+0.04 V/SHE) was applied to a pre-established biofilm formed at open circuit (delayed polarisation), the bacteria developed an extracellular electron transport network that showed multiple redox systems, reaching 9.4 A/m(2) after only 3-9 days of polarisation. In contrast, when polarisation was applied from the beginning, bacteria developed a well-tuned extracellular electron transfer network concomitantly with their growth, but 36 days of polarisation were required to get current of the same order (6-8 A/m(2)). The difference in performance was attributed to the thinner, more heterogeneous structure of the biofilms obtained by delayed polarisation compared to the thick uniform structure obtained by full polarisation.


Applied and Environmental Microbiology | 2011

Electroactivity of Phototrophic River Biofilms and Constitutive Cultivable Bacteria

Emilie Lyautey; Amandine Cournet; Soizic Morin; Stéphanie Boulêtreau; Luc Etcheverry; Jean-Yves Charcosset; François Delmas; Alain Bergel

ABSTRACT Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from −0.36 to −0.76 V/SCE, and peak amplitudes ranging from −9.5 to −19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.


Bioresource Technology | 2016

Removable air-cathode to overcome cathode biofouling in microbial fuel cells

Manon Oliot; Luc Etcheverry; Alain Bergel

An innovative microbial fuel cell (MFC) design is described, which allows the air-cathode to be replaced easily without draining the electrolyte. MFCs equipped with 9-cm2 or 50-cm2 bioanodes provided 0.6 and 0.7W/m2 (referred to the cathode surface area) and were boosted to 1.25 and 1.96W/m2, respectively, when the initial air-cathode was replaced by a new one. These results validate the practical interest of removable air-cathodes and evidence the importance of the cathode biofouling that takes place during the MFC starting phase. As this biofouling is compensated by the concomitant improvement of the bioanodes it cannot be detected on the power curves and may be a widespread cause of performance underestimation.


Electrochimica Acta | 2007

Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

Claire Dumas; Alfonso Mollica; Damien Feron; Régine Basséguy; Luc Etcheverry; Alain Bergel

Collaboration


Dive into the Luc Etcheverry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damien Feron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Rafrafi

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

Claire Dumas

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge