Luc Maffli
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luc Maffli.
Smart Materials and Structures | 2013
Luc Maffli; Samuel Rosset; Herbert Shea
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
Proceedings of SPIE | 2012
Luc Maffli; Benjamin O'Brien; Samuel Rosset; Herbert Shea
We report on the use of zipping actuation applied to dielectric elastomer actuators to microfabricate mm-sized pumps. The zipping actuators presented here use electrostatic attraction to deform an elastomeric membrane by pulling it into contact with a rigid counter electrode. We present several actuation schemes using either conventional DEA actuation, zipping, or a combination of both in order to realize microfluidic devices. A zipping design in which the electric field is applied across the elastomer membrane was explored theoretically and experimentally. Single zipping chambers and a micropump body made of a three chambers connected by an embedded channel were wet-etched into a silicon wafer and subsequently covered by a gold-implanted silicone membrane. We measured static deflections of up to 300 μm on chambers with square openings of 1.8 and 2.6 mm side, in very good agreement with our model.
Proceedings of SPIE | 2014
Samuel Rosset; Luc Maffli; Simon Houis; Herbert Shea
The analytical formulas describing the behaviour of dielectric elastomer actuators (DEAs) are based on hyperelastic strain energy density functions. The analytical modelling of a DEA will only lead to meaningful results if the dielectric elastomer can be accurately represented by the chosen hyperelastic model and if its parameters are carefully matched to the elastomer. In the case of silicone elastomers, we show that the strain energy density of a thin elastomeric membrane depends on the maximum deformation the membrane was previously submitted to (Mullins effect). We also show that using model parameters coming from an uniaxial pull-test to predict the behaviour of the elastomer in an equi-biaxial configuration leads to erroneous results. We have therefore built a measurement setup, which allows testing thin elastomeric membranes under equi-biaxial stress by inflating them with a pressure source. When modelling a DEA under equi-biaxial stretch, the measurement data can be used directly, without the need of an hyperelastic model, leading to voltage-stretch prediction closer the the measured stress-stretch behaviour of the dielectric membrane.
Proceedings of SPIE | 2012
Pit Gebbers; Chauncey Grätzel; Luc Maffli; Christoph Georg Stamm; Herbert Shea
We demonstrate here an alternative dielectric elastomer actuator (DEA) structure, which relies on the compliant nature of elastomer membranes but does not require any electric field in the elastomer. Our elastomer zipping device is a macroscopic version of the electrostatic zipping actuators common in silicon MEMS. It consists of a cm-sized metallic bottom electrode, covered by a thin insulator, on which the elastomer membrane is bonded, enclosing a tapered air gap. A compliant electrode is patterned on the lower face of the elastomer membrane. Applying a voltage between solid bottom electrode and compliant electrode leads to controlled pull-in in movement, comparable to the closing of a zipper, thus giving large strokes and forces with no electrical requirements on the elastomer since no voltage is applied across the membrane. The compliant electrodes (20 mm diameter) are produced by metal ion-implantation into the elastomer membranes. The bottom metal electrodes are coated with 10 to 30 μm of Al2O3. We report on our experimental study of membrane deflection and dynamics and discuss the effect of design parameters such as elastomer mechanical properties and actuator geometry. Membrane deflection of up to 1.4 mm was reached at only 200 V actuation voltage. The large membrane deformation achieved with this zipping actuation can be applied to applications such as pumps or tunable liquid lenses. The out-of plane movement of the membrane can be used for linear actuation.
Proceedings of SPIE | 2015
Alexandre Poulin; Luc Maffli; Samuel Rosset; Herbert Shea
Methods and materials for liquid encapsulation in thin (19 μm) silicone membranes are presented in this work. A set of 12 liquids including solvents, oils, silicone pre-polymers and one ionic liquid are experimentally tested. We show that all selected liquids are chemically inert to silicone and that vapor pressure is the key parameter for stable encapsulation. It is demonstrated that encapsulated volume of silicone pre-polymers and ionic liquids can stay stable for more than 1 month. The actuation of dielectric elastomer actuators (DEAs) in conductive liquids is also investigated. An analysis of the equivalent electrical circuits of immersed DEAs shows that non-overlapping regions of the electrodes should be minimized. It also provides guidelines to determine when the electrodes should be passivated. The effects of immersion in a conductive liquid are assessed by measuring the actuation strain and capacitance over periodic actuation. The experimental results show no sign of liquid-induced degradation over more than 45k actuation cycles.
Proceedings of SPIE | 2013
Luc Maffli; Samuel Rosset; Herbert Shea
We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young’s modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.
Journal of Materials Chemistry C | 2013
Luciano De Sio; Giovanna Palermo; Vincenzo Caligiuri; Andreas E. Vasdekis; Alfredo Pane; Jae-Woo Choi; Luc Maffli; Muhamed Niklaus; Herbert Shea; Cesare Umeton
We report an electro-responsive and pressure sensitive device based on conductive polydimethylsiloxane (PDMS) combined with a short pitch Cholesteric Liquid Crystal (CLC). Ion-implantation and surface chemistry in PDMS enable both the induction of conducting properties in this elastomer as well as long range organization of the CLC. Sample electro-optical and pressure dependent optical properties are explored by applying a modulated electric field through the conducting PDMS and a uniform pressure on the top cover substrate. We show that both an electric field of a few V μm−1 and an external pressure of up to 128 kPa can tune the reflection band by about 100 nm.
Advanced Functional Materials | 2015
Luc Maffli; Samuel Rosset; Michele Ghilardi; Federico Carpi; Herbert Shea
Advanced Functional Materials | 2015
Luc Maffli; Samuel Rosset; Michele Ghilardi; Federico Carpi; Herbert Shea
Archive | 2012
Luc Maffli; Samuel Rosset; Herbert Shea