Luca Bartolomeo
Waseda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luca Bartolomeo.
Journal of Intelligent and Robotic Systems | 2013
Salvatore Sessa; Massimiliano Zecca; Zhuohua Lin; Luca Bartolomeo; Hiroyuki Ishii; Atsuo Takanishi
This paper presents a methodology for a reliable comparison among Inertial Measurement Units or attitude estimation devices in a Vicon environment. The misalignment among the reference systems and the lack of synchronization among the devices are the main problems for the correct performance evaluation using Vicon as reference measurement system. We propose a genetic algorithm coupled with Dynamic Time Warping (DTW) to solve these issues. To validate the efficacy of the methodology, a performance comparison is implemented between the WB-3 ultra-miniaturized Inertial Measurement Unit (IMU), developed by our group, with the commercial IMU InertiaCube3™ by InterSense.
international conference of the ieee engineering in medicine and biology society | 2011
Zhuohua Lin; Massimiliano Zecca; Salvatore Sessa; Luca Bartolomeo; Hiroyuki Ishii; Atsuo Takanishi
This paper presents the preliminary performance evaluation of our new wireless ultra-miniaturized inertial measurement unit (IMU) WB-4 by compared with the Vicon motion capture system. The WB-4 IMU primarily contains a mother board for motion sensing, a Bluetooth module for wireless data transmission with PC, and a Li-Polymer battery for power supply. The mother board is provided with a microcontroller and 9-axis inertial sensors (miniaturized MEMS accelerometer, gyroscope and magnetometer) to measure orientation. A quaternion-based extended Kalman filter (EKF) integrated with an R-Adaptive algorithm for automatic estimation of the measurement covariance matrix is implemented for the sensor fusion to retrieve the attitude. The experimental results showed that the wireless ultra-miniaturized WB-4 IMU could provide high accuracy performance at the angles of roll and pitch. The yaw angle which has reasonable performance needs to be further evaluated.
ieee/sice international symposium on system integration | 2010
Zhuohua Lin; Massimiliano Zecca; Salvatore Sessa; Luca Bartolomeo; Hiroyuki Ishii; Kazuko Itoh; Atsuo Takanishi
Real-time tracking of human body motion is an important technology in synthetic environments, robotics, and other human-computer interaction applications. This paper presents an ultra-miniaturized inertial measurement unit (IMU) named WB-3 for real-time attitude estimation of human limb segments. The WB-3 IMU is provided with a 32-bit microcontroller and 9-axis inertial sensors (miniaturized MEMS accelerometer, gyroscope and magnetometer). The quaternion-based Extended Kalman Filter (EKF) was implemented for the sensor fusion to retrieve the attitude of the human segment. An upper body motion capture system with 12 WB-3 IMUs was elaborated for tracking human movements in real time scenarios.
ieee/sice international symposium on system integration | 2010
Zhuohua Lin; Massimiliano Zecca; Salvatore Sessa; Luca Bartolomeo; Hiroyuki Ishii; Kazuko Itoh; Atsuo Takanishi
Mastication analysis can provide an objective basis for studying and diagnosing jaw musculoskeletal disorders. Therefore, the use and development of devices for quantitatively measuring and analyzing jaw movement have become very popular in the consulting room. This paper proposes a simple to be used jaw tracking prototype by using the new miniaturized wireless Inertial Measurement Unit (IMU) named WB-4. The WB-4 EVTU primarily contains a mother board, a Bluetooth module and a Li-Polymer battery. The mother board is provided with a microcontroller and 9-axis inertial sensors (miniaturized MEMS accelerometer, gyroscope and magnetometer) to measure the jaw motion. The data transmission between WB-4 and PC is based on the Bluetooth module to realize the wireless communication. The IMUs extremely reduced weight and size allows it to be easily attached to mandible during normal mastication tests without physical restriction to the subjects. Three pilot experiments for mastication analysis of chewing gum were elaborated. A group of 9 healthy subjects kindly participated in the experiment. The preliminary results show that WB-4 IMU can efficiently evaluate the jaw movement and mastication pattern of different subjects, which could provide quantitative information to the doctors for the diagnosing and clinical treatment of different jaw diseases.
robotics and biomimetics | 2013
Weisheng Kong; Salvatore Sessa; Sarah Cosentino; Massimiliano Zecca; K. Saito; Chunbao Wang; Zhuohua Lin; Luca Bartolomeo; Hiroyuki Ishii; T. Ikai; Atsuo Takanishi
A common problem among elderly people is the loss of motor ability. Rehabilitation exercises can help these people recover strength and maintain a good level of mobility. However, high costs and the need for special equipment make professional rehabilitation impractical for regular use in daily life, precluding elderly the possibility to perform focalized training at home. The idea of telerehabilitation is becoming more and more concrete with the rapid development of internet technology. Telerehabilitation would allow the user to perform exercises at home with online professional direction from the doctor. However, at the present state, the doctor cannot obtain real-time and quantitative data from the user, and this limits the training effectiveness. To overcome this problem, an extremely miniaturized, portable motion capture system, named WB-4R, has been developed. Calibration and real-time link orientation reconstruction are very important to improve the accuracy in real-time measurement. In this paper, using the positive results of preliminary experiments on lower limbs, the authors will show the feasibility of the method and confirm the effectiveness of the developed system.
Advanced Robotics | 2014
Sarah Cosentino; Klaus Petersen; Zhuohua Lin; Luca Bartolomeo; Salvatore Sessa; Massimiliano Zecca; Atsuo Takanishi
This paper presents an inertial measurement unit-based human gesture recognition system for a robot instrument player to understand the instructions dictated by an orchestra conductor and accordingly adapt its musical performance. It is an extension of our previous publications on natural human–robot musical interaction. With this system, the robot can understand the real-time variations in musical parameters dictated by the conductor’s movements, adding expression to its performance while being synchronized with all the other human partner musicians. The enhanced interaction ability would obviously lead to an improvement of the overall live performance, but also allow the partner musicians, as well as the conductor, to better appreciate a joint musical performance, thanks to the complete naturalness of the interaction. Graphical Abstract
robotics and biomimetics | 2013
Sarah Cosentino; Tatsuhiro Kishi; Massimiliano Zecca; Salvatore Sessa; Luca Bartolomeo; Kenji Hashimoto; Takashi Nozawa; Atsuo Takanishi
In this paper, we describe a human gesture recognition system developed to make a humanoid robot understand non-verbal human social behaviors, and we present the results of preliminary experiments to demonstrate the feasibility of the proposed method. In particular, we have focused on the detection and recognition of laughter, a very peculiar human social signal. In fact, although it is a direct form of social interaction, laughter is classified as semi voluntary action, can be elicited by several different stimuli, and it is strongly associated with positive emotion and physical well-being. The possibility of recognize, and further elicit laughter, will help the humanoid robot to interact in a more natural way with humans, to build positive relationships and thus be more socially integrated in the human society.
robotics and biomimetics | 2012
Zhuohua Lin; Massimiliano Zecca; Salvatore Sessa; Luca Bartolomeo; Hiroyuki Ishii; Atsuo Takanishi
This paper presents the performance evaluation of our wireless miniature Inertial Measurement Unit (IMU) WB-4 by compared with the Vicon motion capture system. In particular, a magnetic field calibration method is introduced to improve the sensor orientation estimate accuracy. The WB-4 IMU primarily contains a motherboard for motion sensing, a Bluetooth module for wireless data transmission with PC, and a Li-Polymer battery for power supply. The motherboard is provided with a 32-bit microcontroller and 3-axis miniaturized MEMS accelerometer, 3-axis gyroscope and 3-axis magnetometer to estimate the sensor orientation based on an extended Kalman filter algorithm. In our previous research of WB-4 IMU performance evaluation, the factory calibration parameters of the magnetometer were used for the sensor fusion, which resulted in a higher error on the yaw angle in respect to roll and pitch. This study presents a magnetic calibration method for overcoming that limitation. The experimental results showed that the wireless WB-4 IMU could achieve better orientation performance in all the directions after the implementation of the magnetic calibration method. The yaw angle accuracy was significantly improved from previous error 5.46 degree to 1.77 degree.
2011 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES (CMLS-11) | 2011
Luca Bartolomeo; Massimiliano Zecca; Salvatore Sessa; Zhuohua Lin; Yoshikazu Mukaeda; Hiroyuki Ishii; Atsuo Takanishi
The surface Electromyography (sEMG) signal is affected by different sources of noises: current technology is considerably robust to the interferences of the power line or the cable motion artifacts, but still there are many limitations with the baseline and the movement artifact noise. In particular, these sources have frequency spectra that include also the low‐frequency components of the sEMG frequency spectrum; therefore, a standard all‐bandwidth filtering could alter important information. The Wavelet denoising method has been demonstrated to be a powerful solution in processing white Gaussian noise in biological signals. In this paper we introduce a new technique for the denoising of the sEMG signal: by using the baseline of the signal before the task, we estimate the thresholds to apply to the Wavelet thresholding procedure. The experiments have been performed on ten healthy subjects, by placing the electrodes on the Extensor Carpi Ulnaris and Triceps Brachii on right upper and lower arms, and performing a flexion and extension of the right wrist. An Inertial Measurement Unit, developed in our group, has been used to recognize the movements of the hands to segment the exercise and the pre‐task baseline. Finally, we show better performances of the proposed method in term of noise cancellation and distortion of the signal, quantified by a new suggested indicator of denoising quality, compared to the standard Donoho technique.
international conference on mechatronics and automation | 2013
Salvatore Sessa; K. Saito; Massimiliano Zecca; Luca Bartolomeo; Z. Lin; Sarah Cosentino; H. Ishii; T. Ikai; Atsuo Takanishi
Physical therapy helps patients to restore the use of the musculoskeletal and the nervous systems through the use of specifics techniques and exercises. The introduction of measurement systems for patient assessment may allow detection of initial stage of diseases, an objective severity assessment, and efficient delivery of drugs and therapies. In rehabilitation centers, sometimes there are specific devices and methodologies available for the locomotion assessment. However, the measurements are usually carried out in a short time slot and this could lead to an overestimation of the walking abilities. The authors propose a system, named WB-4R, which can provide a fast and objective walking assessment using a set of Inertial Measurement Units (IMUs). The WB-4R can be used for the gait analysis in rehabilitation centers or at home because it is compact and relatively maintenance-free. In this paper, it will be shown that our system is able to reconstruct the joint angles of lower limbs and build a foot phase space diagram during straight line walking. Furthermore, we compared the results with an optical system used in the clinical practice.