Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Bragazza is active.

Publication


Featured researches published by Luca Bragazza.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Atmospheric nitrogen deposition promotes carbon loss from peat bogs

Luca Bragazza; Chris Freeman; Timothy G. Jones; Håkan Rydin; Juul Limpens; Nathalie Fenner; Tim Ellis; Renato Gerdol; Michal Hájek; Tomáš Hájek; Paola Iacumin; Lado Kutnar; Teemu Tahvanainen; Hannah Toberman

Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from ≈0.2 to 2 g·m−2·yr−1. We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.


Atmospheric Environment | 2002

Use of moss (Tortula muralis Hedw.) for monitoring organic and inorganic air pollution in urban and rural sites in Northern Italy

Renato Gerdol; Luca Bragazza; Roberta Marchesini; Alessandro Medici; Paola Pedrini; Stefano Benedetti; Alessandro Bovolenta; Simona Coppi

Abstract Concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals, as well as stable nitrogen (N) isotope composition, were determined in moss tissues from an urban area and from rural sites in northern Italy. The total PAH contents were higher in the urban area. The percentage fraction of low molecular weight volatile PAHs on total PAHs was greater in rural sites. The mean concentration ratio (urban:rural) was, overall, much lower for trace metals than for PAHs. Among metals, only Pb levels were highest in the city center, and were, in turn, associated with a more positive δ15N signature in moss tissue. This indicates that exposure to slow-moving traffic in the city center resulted both in higher Pb deposition and a greater contribution of NOx, compared with NHx, in atmospheric N pollution. Most metals (namely Cd, Cr, Fe, Ni, V and Zn) were moderately enriched in moss tissues from the urban area, especially in the sectors downwind from the main emission sources. In contrast, Co and Cu contents in the urban area did not differ from those in rural sites. We concluded that organic (PAH) and inorganic (metal) pollution showed varying patterns which reflected differences as regards both emission sources and atmospheric transport pathways. Atmospheric deposition of PAHs peaked in close vicinity to urban emission sources. Conversely, the atmospheric deposition of metals, except Pb, was more diffuse over the territory.


Environmental Pollution | 2000

Monitoring of heavy metal deposition in Northern Italy by moss analysis

Renato Gerdol; Luca Bragazza; Roberta Marchesini; R. Alber; L. Bonetti; G. Lorenzoni; M. Achilli; A. Buffoni; N. De Marco; M. Franchi; S. Pison; S. Giaquinta; F. Palmieri; P. Spezzano

A survey of heavy metal deposition in the mountainous territories of Northern Italy was carried out in 1995-96. Moss samples (mainly Hylocomium splendens) were collected in a dense network of sites (about 3.2 sites/1000 km(2)) and the data of metal concentrations in moss tissues were statistically correlated with environmental and climatic factors, as well as with bulk deposition of elements and elemental concentrations in the soil. Three main geographic patterns of metal concentration in mosses could be defined: (1) Fe, Ni, and Cr, all derived both by soil particulates and anthropogenic emissions connected with ferrous metal manufacturing, were mostly concentrated in Northwestern Italy; (2) Cu and Zn, as typical multi-source elements, showed rather high concentrations with little ranges of variation over the whole area and small peaks reflecting local source points; (3) Cd and Pb reflected long-distance transport and showed highest concentrations in the regions with highest precipitation, especially in the Eastern Alps.


Journal of Vegetation Science | 2002

Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands?

Luca Bragazza; Renato Gerdol

Abstract Gradients in acidity-alkalinity and nutrient availability were studied in 2 Sphagnum-dominated peatlands on the southeastern Italian Alps. Decreasing concentrations of most mineral elements (Ca2+, Mg2+, Mn2+, Al3+ and Si4+) in pore water indicated a progressively lower influx of mineral-soil water from the slightly minerotrophic conditions in the peatland margins to ombrogenous conditions in the central part of the peatlands. This was paralleled by decreasing concentrations of ash, bulk density, Ca, Fe and, partly, Mn in the peat. The nutrient gradient, as defined by pore water concentrations of N and P, was largely independent of the acidity-alkalinity gradient: NO3− and PO43− had similar concentrations throughout the gradient, whereas NH4+ concentrations increased with increasing pore-water pH. In contrast, the peat nutrient gradient coincided with the acidity-alkalinity gradient, with total concentrations of N and P decreasing from the margin to the centre. Bryophytes and vascular plants had different responses along the acidity-alkalinity gradient and the nutrient gradient. Bryophyte distribution reflected the acidity-alkalinity gradient both in pore water and in peat. Vascular plant distribution was mainly influenced by variations in nutrient availability. Nomenclature: Pignatti (1982) for vascular plants; Frahm & Frey (1987) for bryophytes.


New Phytologist | 2011

Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis

Juul Limpens; Gustaf Granath; Urban Gunnarsson; R. Aerts; S. Bayley; Luca Bragazza; J. Bubier; Alexandre Buttler; L. van den Berg; A-J Francez; Renato Gerdol; P. Grosvernier; Monique M. P. D. Heijmans; Marcel R. Hoosbeek; Stefan Hotes; M. Ilomets; Ian D. Leith; Edward A. D. Mitchell; Tim R. Moore; Mats Nilsson; J-F Nordbakken; Line Rochefort; Håkan Rydin; Lucy J. Sheppard; M. Thormann; M. M. Wiedermann; B. L. Williams; Bin Xu

Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain. Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss. We employed meta-regressions to the results of 107 field experiments, accounting for sampling dependence in the data. We found that high N loading (comprising N application rate, experiment duration, background N deposition) depressed Sphagnum production relative to untreated controls. The interactive effects of presence of competitive vascular plants and high tissue N concentrations indicated intensified biotic interactions and altered nutrient stochiometry as mechanisms underlying the detrimental N effects. Importantly, a higher summer temperature (mean for July) and increased annual precipitation intensified the negative effects of N. The temperature effect was comparable to an experimental application of almost 4 g N m(-2)  yr(-1) for each 1°C increase. Our results indicate that current rates of N deposition in a warmer environment will strongly inhibit C sequestration by Sphagnum-dominated vegetation.


Environmental Pollution | 2002

Element concentrations in the forest moss Hylocomium splendens: variation associated with altitude, net primary production and soil chemistry

Renato Gerdol; Luca Bragazza; Roberta Marchesini

Net primary production (NPP) of the forest moss Hylocomium splendens increased significantly along an elevational gradient in the southern Alps of Italy. Extracellularly bound metals (Al, Ca, Co, Cr, Fe, Ni, Mo, Ni, Pb) showed declining concentrations in moss tissue with increasing altitude, presumably because the amount of exchange sites on the cell wall increases less than total biomass. Concentrations of intracellular elements did not vary (Cd, Cu, Mg, Na, Zn), or even increased (K) with altitude. The observed patterns were always independent of precipitation amount and soil concentrations of exchangeable elements. A higher soil nutrient status only enhanced K uptake by the moss. We concluded that variations in moss NPP, associated with elevational gradients, may significantly affect estimates of atmospheric deposition based on moss analysis in mountainous regions.


Plant Ecology | 2005

Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog

Luca Bragazza; Håkan Rydin; Renato Gerdol

The major environmental gradients underlying plant species distribution were outlined in two climatically and bio-geographically contrasting mires: a Swedish bog in the boreo-nemoral zone, and an Italian bog in the south-eastern Alps. Data on mire morphology, surface hydrology, floristic composition, peat chemistry and pore-water chemistry were collected along transects from the mire margin (i.e., the outer portion of the mire in contact with the surrounding mineral soil) towards the mire expanse (i.e., the inner portion of the mire). The delimitation and the extent of the minerotrophic mire margin were related to the steepness of the lateral mire slope which, in turns, controls the direction of surface water flow. The mineral soil water limit was mirrored in geochemical variables such as pH, alkalinity, Ca2+, Mg2+, Al3+, Mn2+, and SiO2 concentrations in pore-water, as well as Ca, Al, Fe, N and P contents in surface peat. Depending on regional requirements of plant species, different species were useful as fen limit indicators at the two sites. The main environmental factors affecting distribution of habitat types and plant species in the two mires were the acidity-alkalinity gradient, and the gradient in depth to the water table. The mire margin – mire expanse gradient corresponds to a complex gradient mainly reflected in a differentiation of vegetation structure in relation to the aeration of the peat substrate.


New Phytologist | 2008

Heatwave 2003: high summer temperature, rather than experimental fertilization, affects vegetation and CO2 exchange in an alpine bog

Renato Gerdol; Luca Bragazza; Lisa Brancaleoni

Nitrogen and phosphorus were added experimentally in a bog in the southern Alps. It was hypothesized that alleviating nutrient limitation will increase vascular plant cover. As a consequence, more carbon will be fixed through higher rates of net ecosystem CO(2) exchange (NEE). The vascular cover did increase at the expense of Sphagnum mosses. However, such vegetation changes were largely independent of the treatment and were probably triggered by an exceptional heatwave in summer 2003. Contrary to the tested hypothesis, NEE was unaffected by the nutrient treatments but was strongly influenced by temperature and water-table depth. In particular, ecosystem respiration in the hot summer of 2003 increased dramatically, presumably owing to enhanced heterotrophic respiration in an increased oxic peat layer. At the end of the experiment, the Sphagnum cover decreased significantly in the nitrogen-fertilized treatment at hummock microhabitats. In the long term, this will imply a proportionally greater accumulation of vascular litter, more easily decomposable than the recalcitrant Sphagnum litter. As a result, rates of carbon fixation may decrease because of stimulated respiration.


Ecology | 2014

Plant functional types define magnitude of drought response in peatland CO2 exchange.

Jan J. Kuiper; Wolf M. Mooij; Luca Bragazza; Bjorn J. M. Robroek

Peatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant-removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during (i.e., resistance) and after (i.e., recovery) an experimental drought. The removal of PFTs caused a decrease of NEE, but the rate differed between microhabitats (i.e., hummocks and lawns) and the type of PFTs. Ericoid removal had a large effect on NEE in hummocks, while the graminoids played a major role in the lawns. The removal of PFTs did not affect the resistance or the recovery after the experimental drought. We argue that the response of Sphagnum mosses (the only PFT present in all treatments) to drought is dominant over that of coexisting PFTs. However, we observed that the moment in time when the system switched from C sink to C source during the drought was controlled by the vascular PFTs. In the light of climate change, the shifts in species composition or even the loss of certain PFTs are expected to strongly affect the future C dynamics in response to environmental stress.


Protist | 2004

Testate amoebae (Protista) communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): Relationships with altitude, and moss elemental chemistry

Edward A. D. Mitchell; Luca Bragazza; Renato Gerdol

We studied the testate amoebae in the moss Hylocomium splendens along an altitudinal gradient from 1000 to 2200 m asl. in the south-eastern Alps of Italy in relation to micro- and macro-nutrient content of moss plants. Three mountainous areas were chosen, two of them characterised by calcareous bedrock, the third by siliceous bedrock. A total of 25 testate amoebae taxa were recorded, with a mean species richness of 9.3 per sampling plot. In a canonical correspondence analysis, 63.1% of the variation in the amoebae data was explained by moss tissue chemistry, namely by C, P, Ca, Mg, Al, Fe, and Na content and a binary site variable. We interpreted this result as an indirect effect of moss chemistry on testate amoebae through an influence on prey organisms. Although two species responded to altitude, there was no overall significant relationship between testate amoebae diversity or community structure and altitude, presumably because our sampling protocol aimed at minimizing the variability due to vegetation types and soil heterogeneity. This suggests that previous evidence of altitudinal or latitudinal effects on testate amoebae diversity may at least in part be due to a sampling bias, namely differences in soil type or moss species sampled.

Collaboration


Dive into the Luca Bragazza's collaboration.

Top Co-Authors

Avatar

Alexandre Buttler

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juul Limpens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Constant Signarbieux

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge