Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca De Trizio is active.

Publication


Featured researches published by Luca De Trizio.


Chemical Reviews | 2016

Forging Colloidal Nanostructures via Cation Exchange Reactions

Luca De Trizio; Liberato Manna

Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.


Chemistry of Materials | 2015

Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions

Luca De Trizio; Roberto Gaspari; Giovanni Bertoni; Ilka Kriegel; Luca Moretti; Francesco Scotognella; Lorenzo Maserati; Yang Zhang; Gabriele C. Messina; Mirko Prato; Sergio Marras; Andrea Cavalli; Liberato Manna

Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange.


Journal of the American Chemical Society | 2014

Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

Luca De Trizio; Hongbo Li; Alberto Casu; Alessandro Genovese; Ayyappan Sathya; Gabriele C. Messina; Liberato Manna

We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys.


ACS Nano | 2012

Size-Tunable, Hexagonal Plate-like Cu3P and Janus-like Cu–Cu3P Nanocrystals

Luca De Trizio; Albert Figuerola; Liberato Manna; Alessandro Genovese; Chandramohan George; Rosaria Brescia; Zineb Saghi; Roberto Simonutti; Marijn A. van Huis; Andrea Falqui

We describe two synthesis approaches to colloidal Cu(3)P nanocrystals using trioctylphosphine (TOP) as phosphorus precursor. One approach is based on the homogeneous nucleation of small Cu(3)P nanocrystals with hexagonal plate-like morphology and with sizes that can be tuned from 5 to 50 nm depending on the reaction time. In the other approach, metallic Cu nanocrystals are nucleated first and then they are progressively phosphorized to Cu(3)P. In this case, intermediate Janus-like dimeric nanoparticles can be isolated, which are made of two domains of different materials, Cu and Cu(3)P, sharing a flat epitaxial interface. The Janus-like nanoparticles can be transformed back to single-crystalline copper particles if they are annealed at high temperature under high vacuum conditions, which makes them an interesting source of phosphorus. The features of the Cu-Cu(3)P Janus-like nanoparticles are compared with those of the striped microstructure discovered more than two decades ago in the rapidly quenched Cu-Cu(3)P eutectic of the Cu-P alloy, suggesting that other alloy/eutectic systems that display similar behavior might give origin to nanostructures with flat, epitaxial interface between domains of two diverse materials. Finally, the electrochemical properties of the copper phosphide plates are studied, and they are found to be capable of undergoing lithiation/delithiation through a displacement reaction, while the Janus-like Cu-Cu(3)P particles do not display an electrochemical behavior that would make them suitable for applications in batteries.


ACS Applied Materials & Interfaces | 2013

Colloidal synthesis of cuprite (Cu2O) octahedral nanocrystals and their electrochemical lithiation.

Andrea Paolella; Rosaria Brescia; Mirko Prato; Mauro Povia; Sergio Marras; Luca De Trizio; Andrea Falqui; Liberato Manna; Chandramohan George

We report a facile colloidal route to prepare octahedral-shaped cuprite (Cu2O) nanocrystals (NCs) of ∼40 nm in size that exploits a new reduction pathway, i.e., the controlled reduction of a cupric ion by acetylacetonate directly to cuprite. Detailed structural, morphological, and chemical analyses were carried on the cuprite NCs. We also tested their electrochemical lithiation, using a combination of techniques (cyclic voltammetry, galvanostatic, and impedance spectroscopy), in view of their potential application as anodes for Li ion batteries. Along with these characterizations, the morphological, structural, and chemical analyses (via high-resolution electron microscopy, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy) of the cycled Cu2O NCs (in the lithiated stage, after ∼50 cycles) demonstrate their partial conversion upon cycling. At this stage, most of the NCs had lost their octahedral shape and had evolved into multidomain particles and were eventually fragmented. Overall, the shape changes (upon cycling) did not appear to be concerted for all the NCs in the sample, suggesting that different subsets of NCs were characterized by different lithiation kinetics. We emphasize that a profound understanding of the lithiation reaction with NCs defined by a specific crystal habit is still essential to optimize nanoscale conversion reactions.


ACS Nano | 2016

Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots

Francesca Pietra; Luca De Trizio; Anne W. Hoekstra; Nicolas Renaud; Mirko Prato; Ferdinand C. Grozema; Patrick J. Baesjou; Rolf Koole; Liberato Manna; Arjan J. Houtepen

Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn(2+) ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1-z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e., varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal.


Chemistry of Materials | 2017

Changing the Dimensionality of Cesium Lead Bromide Nanocrystals by Reversible Postsynthesis Transformations with Amines

Francisco Palazon; Quinten A. Akkerman; Luca De Trizio; Zhiya Dang; Mirko Prato; Liberato Manna

by Reversible Postsynthesis Transformations with Amines Francisco Palazon,† Guilherme Almeida,†,§ Quinten A. Akkerman,†,§ Luca De Trizio,† Zhiya Dang,† Mirko Prato,‡ and Liberato Manna*,† †Nanochemistry Department and ‡Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy Dipartimento di Chimica e Chimica Industriale, Universita ̀ degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy


Journal of the American Chemical Society | 2015

Selective Cation Exchange in the Core Region of Cu2–xSe/Cu2–xS Core/Shell Nanocrystals

Karol Miszta; Graziella Gariano; Rosaria Brescia; Sergio Marras; Francesco De Donato; Sandeep Ghosh; Luca De Trizio; Liberato Manna

We studied cation exchange (CE) in core/shell Cu2–xSe/Cu2–xS nanorods with two cations, Ag+ and Hg2+, which are known to induce rapid exchange within metal chalcogenide nanocrystals (NCs) at room temperature. At the initial stage of the reaction, the guest ions diffused through the Cu2–xS shell and reached the Cu2–xSe core, replacing first Cu+ ions within the latter region. These experiments prove that CE in copper chalcogenide NCs is facilitated by the high diffusivity of guest cations in the lattice, such that they can probe the whole host structure and identify the preferred regions where to initiate the exchange. For both guest ions, CE is thermodynamically driven as it aims for the formation of the chalcogen phase characterized by the lower solubility under the specific reaction conditions.


ACS Nano | 2017

Dual Band Electrochromic Devices Based on Nb-Doped TiO2 Nanocrystalline Electrodes

Mariam Barawi; Luca De Trizio; Roberto Giannuzzi; Giulia Veramonti; Liberato Manna; Michele Manca

The reliable exploitation of localized surface plasmon resonance in transparent conductive oxides is being pursued to push the developement of an emerging class of advanced dynamic windows, which offer the opportunity to selectively and dynamically control the intensity of the incoming thermal radiation without affecting visible transparency. In this view, Nb-doped TiO2 colloidal nanocrystals are particularly promising, as they have a wide band gap and their plasmonic features can be finely tailored across the near-infrared region by varying the concentration of dopants. Four batches of Nb-doped TiO2 nanocrystals with different doping levels (from 0% to 15% of niobium content) have been used here to prepare highly transparent mesoporous electrodes for near-infrared selective electrochromic devices, capable of dynamically modulating the intensity of the transmitted radiation upon the application of a relatively small bias voltage. An engineered dual band electrochromic device (made of 10%-Nb-doped TiO2 nanocrystals) has been eventually fabricated. It was shown to provide two complementary spectroelectrochemical responses, which can be independently controlled through the intensity of the applied potential: a large variation of the optical transmittance in the near-infrared region (by the intensification of the localized surface plasmon scattering) was achievable in the 0-3 V voltage window, reaching values greater than 64% in the spectral range from 800 to 2000 nm, whereas the visible absorption could also be intensively varied at higher potentials (from 3 to 4 V), driven by Li intercalation into the TiO2 anatase lattice.


Journal of the American Chemical Society | 2016

Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

Renyong Tu; Yi Xie; Giovanni Bertoni; Aidin Lak; Roberto Gaspari; Arnaldo Rapallo; Andrea Cavalli; Luca De Trizio; Liberato Manna

Cu2–xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2–xTe/CdTe or Cu2–xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2–xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2–xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb2+ or Sn2+, yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2–xTe@PbTe or Cu2–xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2–xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

Collaboration


Dive into the Luca De Trizio's collaboration.

Top Co-Authors

Avatar

Liberato Manna

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mirko Prato

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Zhiya Dang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Liberato Manna

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Roberto Gaspari

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Liberato Manna

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alessandro Genovese

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Giovanni Bertoni

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge