Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Lanzano is active.

Publication


Featured researches published by Luca Lanzano.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Capturing directed molecular motion in the nuclear pore complex of live cells

Francesco Cardarelli; Luca Lanzano; Enrico Gratton

Nuclear pore complexes (NPCs) are gateways for nucleocytoplasmic exchange. Intrinsically disordered nucleoporins (Nups) form a selective filter inside the NPC, taking a central role in the vital nucleocytoplasmic transport mechanism. How such intricate meshwork relates to function and gives rise to a transport mechanism is still unclear. Here we set out to tackle this issue in intact cells by an established combination of fluorescence correlation spectroscopy and real-time tracking of the center of mass of single NPCs. We find the dynamics of nucleoporin Nup153 to be regulated so as to produce rapid, discrete exchange between two separate positions within the NPC. A similar behavior is also observed for both karyopherinβ1 transport-receptor and cargoes destined to nuclear import. Thus, we argue that directed Nup-mediated molecular motion may represent an intrinsic feature of the overall selective gating through intact NPCs.


Journal of Biological Chemistry | 2011

Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters

Hector Giral; Luca Lanzano; Yupanqui Caldas; Judith Blaine; Jill W. Verlander; Tim C. Lei; Enrico Gratton; Moshe Levi

The sodium-dependent phosphate (Na/Pi) transporters NaPi-2a and NaPi-2c play a major role in the renal reabsorption of Pi. The functional need for several transporters accomplishing the same role is still not clear. However, the fact that these transporters show differential regulation under dietary and hormonal stimuli suggests different roles in Pi reabsorption. The pathways controlling this differential regulation are still unknown, but one of the candidates involved is the NHERF family of scaffolding PDZ proteins. We propose that differences in the molecular interaction with PDZ proteins are related with the differential adaptation of Na/Pi transporters. Pdzk1−/− mice adapted to chronic low Pi diets showed an increased expression of NaPi-2a protein in the apical membrane of proximal tubules but impaired up-regulation of NaPi-2c. These results suggest an important role for PDZK1 in the stabilization of NaPi-2c in the apical membrane. We studied the specific protein-protein interactions of Na/Pi transporters with NHERF-1 and PDZK1 by FRET. FRET measurements showed a much stronger interaction of NHERF-1 with NaPi-2a than with NaPi-2c. However, both Na/Pi transporters showed similar FRET efficiencies with PDZK1. Interestingly, in cells adapted to low Pi concentrations, there were increases in NaPi-2c/PDZK1 and NaPi-2a/NHERF-1 interactions. The differential affinity of the Na/Pi transporters for NHERF-1 and PDZK1 proteins could partially explain their differential regulation and/or stability in the apical membrane. In this regard, direct interaction between NaPi-2c and PDZK1 seems to play an important role in the physiological regulation of NaPi-2c.


Biophysical Journal | 2011

Fluorescence Correlation Spectroscopy of Intact Nuclear Pore Complexes

Francesco Cardarelli; Luca Lanzano; Enrico Gratton

No methods proposed thus far have the sensitivity to measure the transport of single molecules through single nuclear pore complexes (NPCs) in intact cells. Here we demonstrate that fluorescence correlation spectroscopy (FCS) combined with real-time tracking of the center of mass of single NPCs in live, unperturbed cells allows us to detect the transport of single molecules in a reference system of a pore with high temporal (millisecond) and spatial (limited by diffraction) resolution. We find that the transport of the classical receptor karyopherin-β1 (Kapβ1) is regulated so as to produce a peculiar distribution of characteristic times at the NPC. This regulation, which is spatially restricted to the pore, depends on the properties and metabolic energy of Kapβ1. As such, this method provides a powerful tool for studying nucleocytoplasmic shuttling at the nanometer scale under physiological conditions.


Nature Communications | 2015

Encoding and decoding spatio-temporal information for super-resolution microscopy

Luca Lanzano; I Coto Hernández; Marco Castello; Enrico Gratton; Alberto Diaspro; Giuseppe Vicidomini

The challenge of increasing the spatial resolution of an optical microscope beyond the diffraction limit can be reduced to a spectroscopy task by proper manipulation of the molecular states. The nanoscale spatial distribution of the molecules inside the detection volume of a scanning microscope can be encoded within the fluorescence dynamics and decoded by resolving the signal into its dynamics components. Here we present a robust and general method to decode this information using phasor analysis. As an example of the application of this method, we optically generate spatially controlled gradients in the fluorescence lifetime by stimulated emission. Spatial resolution can be increased indefinitely by increasing the number of resolved dynamics components up to a maximum determined by the amount of noise. We demonstrate that the proposed method provides nanoscale imaging of subcellular structures, opening new routes in super-resolution microscopy based on the encoding/decoding of spatial information through manipulation of molecular dynamics.


Biophysical Journal | 2009

Coherent Movement of Cell Layers during Wound Healing by Image Correlation Spectroscopy

Kandice Tanner; Donald R. Ferris; Luca Lanzano; Berhan Mandefro; William W. Mantulin; David M. Gardiner; Elizabeth L. Rugg; Enrico Gratton

We have determined the complex sequence of events from the point of injury until reepithelialization in axolotl skin explant model and shown that cell layers move coherently driven by cell swelling after injury. We quantified three-dimensional cell migration using correlation spectroscopy and resolved complex dynamics such as the formation of dislocation points and concerted cell motion. We quantified relative behavior such as velocities and swelling of cells as a function of cell layer during healing. We propose that increased cell volume ( approximately 37% at the basal layer) is the driving impetus for the start of cell migration after injury where the enlarged cells produce a point of dislocation that foreshadows and dictates the initial direction of the migrating cells. Globally, the cells follow a concerted vortex motion that is maintained after wound closure. Our results suggest that cell volume changes the migration of the cells after injury.


Journal of Biological Chemistry | 2012

NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli.

Hector Giral; DeeAnn Cranston; Luca Lanzano; Yupanqui Caldas; Eileen Sutherland; Joanna Rachelson; Evgenia Dobrinskikh; Edward J. Weinman; R. Brian Doctor; Enrico Gratton; Moshe Levi

Background: The type 2b sodium-dependent phosphate co-transporter (NaPi-2b) is the main mediator of intestinal active Pi absorption. Results: NaPi-2b interacts with the PDZ domain of NHE3 regulatory factor 1 (NHERF1). Conclusion: NHERF1 is an important regulator of NaPi-2b apical membrane targeting in response to a low Pi diet. Significance: Understanding of NaPi-2b adaptive mechanisms can help to design new therapies against hypo- and hyperphosphatemic disorders. Pi uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary Pi but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofluorescence imaging shows NaPi-2b and two PDZ domain containing proteins, NHERF1 and PDZK1, are expressed in the apical microvillar domain of rat small intestine enterocytes. Co-immunoprecipitation studies in rat enterocytes show that NHERF1 associates with NaPi-2b but not PDZK1. In HEK co-expression studies, GFP-NaPi-2b co-precipitates with FLAG-NHERF1. This interaction is markedly diminished when the C-terminal four amino acids are truncated from NaPi-2b. FLIM-FRET analyses using tagged proteins in CACO-2BBE cells show a distinct phasor shift between NaPi-2b and NHERF1 but not between NaPi-2b and the PDZK1 pair. This shift demonstrates that NaPi-2b and NHERF1 reside within 10 nm of each other. NHERF1−/− mice, but not PDZK1−/− mice, had a diminished adaptation of NaPi-2b expression in response to a low Pi diet. Together these studies demonstrate that NHERF1 associates with NaPi-2b in enterocytes and regulates NaPi-2b adaptation.


Nano Letters | 2016

Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing.

Michael D. Brenner; Ruobo Zhou; Daniel E. Conway; Luca Lanzano; Enrico Gratton; Martin A. Schwartz; Taekjip Ha

Recent development and applications of calibrated, fluorescence resonance energy transfer (FRET)-based tension sensors have led to a new understanding of single molecule mechanotransduction in a number of biological systems. To expand the range of accessible forces, we systematically measured FRET versus force trajectories for 25, 40, and 50 amino acid peptide repeats derived from spider silk. Single molecule fluorescence-force spectroscopy showed that the peptides behaved as linear springs instead of the nonlinear behavior expected for a disordered polymer. Our data are consistent with a compact, rodlike structure that measures 0.26 nm per 5 amino acid repeat that can stretch by 500% while maintaining linearity, suggesting that the remarkable elasticity of spider silk proteins may in part derive from the properties of individual chains. We found the shortest peptide to have the widest range of force sensitivity: between 2 pN and 11 pN. Live cell imaging of the three tension sensor constructs inserted into vinculin showed similar force values around 2.4 pN. We also provide a lookup table for force versus intracellular FRET for all three constructs.


Journal of Biophotonics | 2011

Nanometer scale imaging by the modulation tracking method

Luca Lanzano; Michelle A. Digman; Peter T. Fwu; Hector Giral; Moshe Levi; Enrico Gratton

We developed an optical imaging method based on a feedback principle in which the specific scan pattern is adapted according to the shape of the sample. The feedback approach produces nanometer-resolved 3D images of very small and moving features in live cells in seconds. We show images of microvilli in live cultured opossum kidney cells expressing NaPi co-transporter proteins with different GFP constructs and images of cell protrusions in a collagen matrix with a resolution of about 20 nm. We found that in the microvilli the NaPi proteins can be found clustered. Along cell protrusions in 3D we identified cellular adhesions to the extracellular matrix. Our approach to super-resolution and to 3D nanoimaging is different than other proposed methods that break the diffraction limit using non-linear effects or are based on single molecule localization.


Nature Communications | 2017

Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS

Luca Lanzano; Lorenzo Scipioni; Melody Di Bona; Paolo Bianchini; Ranieri Bizzarri; Francesco Cardarelli; Alberto Diaspro; Giuseppe Vicidomini

The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.


Measurement Science and Technology | 2013

Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

Ilaria Altamore; Luca Lanzano; Enrico Gratton

We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control.

Collaboration


Dive into the Luca Lanzano's collaboration.

Top Co-Authors

Avatar

Enrico Gratton

University of California

View shared research outputs
Top Co-Authors

Avatar

Alberto Diaspro

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Vicidomini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Paolo Bianchini

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Scipioni

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Hector Giral

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Moshe Levi

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Melody Di Bona

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Yupanqui Caldas

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge