Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Mariotti is active.

Publication


Featured researches published by Luca Mariotti.


PLOS ONE | 2013

Use of the γ-H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures

Luca Mariotti; Giacomo Pirovano; Kienan Savage; Mihaela Ghita; A. Ottolenghi; Kevin Prise; Giuseppe Schettino

Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.


International Journal of Radiation Biology | 2012

Track structure, radiation quality and initial radiobiological events: Considerations based on the PARTRAC code experience

Daniele Alloni; Alessandro Campa; Werner Friedland; Luca Mariotti; A. Ottolenghi

Abstract Purpose: The role of track structures for understanding the biological effects of radiation has been the subject of research activities for decades. The physics that describes such processes is the core Monte Carlo codes, such as the biophysical PARTRAC (PARticle TRACks) code described in this review, which follow the mechanisms of radiation-matter interaction from the early stage. In this paper a review of the track structure theory (and of its possible extension concerning non-DNA targets) is presented. Materials and methods: The role of radiation quality and track structure is analyzed starting from the heavy ions results obtained with the biophysical Monte Carlo code PARTRAC (PARticles TRACks). PARTRAC calculates DNA damage in human cells based on the superposition of simulated track structures in liquid water to an ‘atom-by-atom’ model of human DNA. Results: Calculations for DNA fragmentation compared with experimental data for different radiation qualities are illustrated. As an example, the strong dependence of the complexity of DNA damage on radiation track structure, and the very large production of very small DNA fragments (lower than 1 kbp (kilo base pairs) usually not detected experimentally) after high LET (high-Linear Energy Transfer) irradiation is shown. Furthermore the possible importance of non-nuclear/non-DNA targets is discussed in the particular case of cellular membrane and mitochondria. Conclusions: The importance of the track structure is underlined, in particular the dependence of a given late cellular effect on the spatial distribution of DNA double-strand breaks (DSB) along the radiation track. These results show that the relative biological effectiveness (RBE) for DSB production can be significantly larger than 1. Moreover the cluster properties of high LET radiation may determine specific initial targets and damage evolution.


Radiation Research | 2010

A Monte Carlo Study of the Radiation Quality Dependence of DNA Fragmentation Spectra

D. Alloni; Alessandro Campa; M. Belli; Giuseppe Esposito; Angelica Facoetti; Werner Friedland; M. Liotta; Luca Mariotti; Herwig G. Paretzke; A. Ottolenghi

Abstract We simulated the irradiation of human fibroblasts with γ rays, protons and helium, carbon and iron ions at a fixed dose of 5 Gy. The simulations were performed with the biophysical Monte Carlo code PARTRAC. From the output of the code, containing in particular the genomic positions of the radiation-induced DNA double-strand breaks (DSBs), we obtained the DNA fragmentation spectra. Very small fragments, in particular those related to “complex lesions” (few tens of base pairs), are probably very important for the late cellular consequences, but their detection is not possible with the common experimental techniques. We paid special attention to the differences among the various ions in the production of these very small fragments; in particular, we compared the fragmentation spectra for ions of the same specific energy and for ions of the same LET (linear energy transfer). As found previously for iron ions, we found that the RBE (relative biological effectiveness) for DSB production was considerably higher than 1 for all high-LET radiations considered. This is at variance with the results obtainable from experimental data, and it is due to the ability to count the contribution of small fragments. It should be noted that for a given LET this RBE decreases with increasing ion charge, due mainly to the increasing mean energy of secondary electrons. A precise quantification of the DNA initial damage can be of great importance for both radiation protection, particularly in open-space long-term manned missions, and hadrontherapy.


International Journal of Radiation Biology | 2012

Investigation of the mechanisms underpinning IL-6 cytokine release in bystander responses: the roles of radiation dose, radiation quality and specific ROS/RNS scavengers.

Luca Mariotti; Alessia Bertolotti; Elena Ranza; Gabriele Babini; A. Ottolenghi

Abstract Purpose: To investigate the mechanisms regulating the pathways of the bystander transmission in vitro, focusing on the radiation-perturbed signalling (via Interleukine 6, IL-6) of the irradiated cells after exposure to low doses of different radiation types. Materials and methods: An integrated ‘systems radiation biology’ approach was adopted. Experimentally the level of the secreted cytokine from human fibroblasts was detected with ELISA (Enzyme-Linked ImmunoSorbent Assay) method and subsequently the data were analyzed and coupled with a phenomenological model based on differential equations to evaluate the single-cell release mechanisms. Results: The data confirmed the important effect of radiation on the IL-6 pathway, clearly showing a crucial role of the ROS (Reactive Oxygen Species) in transducing the effect of initial radiation exposure and the subsequent long-term release of IL-6. Furthermore, a systematic investigation of radiation dose/radiation quality dependence seems to indicate an increasing efficiency of high LET (Linear Energy Transfer) irradiation in the release of the cytokine. Basic hypotheses were tested, on the correlation between direct radiobiological damage and signal release and on the radiation target for this endpoint (secretion of IL-6) Conclusions: The results demonstrate the role of reactive oxygen and nitrogen species in the signaling pathways of IL-6. Furthermore the systems radiation biology approach here adopted, allowed us to test and verify hypotheses on the behavior of the single cell in the release of cytokine, after the exposure to different doses and different qualities of ionizing radiation.


Radiation Research | 2010

Effects of ionizing radiation on cell-to-cell communication.

Luca Mariotti; Angelica Facoetti; Daniele Alloni; Alessia Bertolotti; Elena Ranza; A. Ottolenghi

Abstract Cell-to-cell signaling has become a significant issue in radiation biology due to experimental evidence, accumulated primarily since the early 1990s, of radiation-induced bystander effects. Several candidate mediators involved in cell-to-cell communication have been investigated and proposed as being responsible for this phenomenon, but the current investigation techniques (both theoretical and experimental) of the mechanisms involved, due to the particular set-up of each experiment, result in experimental data that often are not directly comparable. In this study, a comprehensive approach was adopted to describe cell-to-cell communication (focusing on cytokine signaling) and its modulation by external agents such as ionizing radiation. The aim was also to provide integrated theoretical instruments and experimental data to help in understanding the peculiarities of in vitro experiments. Theoretical/modeling activities were integrated with experimental measurements by (1) redesigning a cybernetic model (proposed in its original form in the 1950s) to frame cell-to-cell communication processes, (2) implementing and developing a mathematical model, and (3) designing and carrying out experiments to quantify key parameters involved in intercellular signaling (focusing as a pilot study on the release and decay of IL-6 molecules and their modulation by radiation). This formalization provides an interpretative framework for understanding the intercellular signaling and in particular for focusing on the study of cell-to-cell communication in a “step-by-step” approach. Under this model, the complex phenomenon of signal transmission was reduced where possible into independent processes to investigate them separately, providing an evaluation of the role of cell communication to guarantee and maintain the robustness of the in vitro experimental systems against the effects of perturbations.


Radiation Research | 2013

Integration of Monte Carlo Simulations with PFGE Experimental Data Yields Constant RBE of 2.3 for DNA Double-Strand Break Induction by Nitrogen Ions between 125 and 225 keV/μm LET

D. Alloni; Alessandro Campa; Werner Friedland; Luca Mariotti; A. Ottolenghi

The number of small radiation-induced DNA fragments can be heavily underestimated when determined from measurements of DNA mass fractions by gel electrophoresis, leading to a consequent underestimation of the initial DNA damage induction. In this study we reanalyzed the experimental results for DNA fragmentation and DNA double-strand break (DSB) yields in human fibroblasts irradiated with γ rays and nitrogen ion beams with linear energy transfer (LET) equal to 80, 125, 175 and 225 keV/μm, originally measured by Höglund et al. (Radiat Res 155, 818–825, 2001 and Int J Radiat Biol 76, 539–547, 2000). In that study the authors converted the measured distributions of fragment masses into DNA fragment distributions using mid-range values of the measured fragment length intervals, in particular they assumed fragments with lengths in the interval of 0–48 kbp had the mid-range value of 24 kbp. However, our recent detailed simulations with the Monte Carlo code PARTRAC, while reasonably in agreement with the mass distributions, indicate significantly increased yields of very short fragments by high-LET radiation, so that the actual average fragment lengths, in the interval 0–48 kbp, 2.4 kbp for 225 keV/μm nitrogen ions were much shorter than the assumed mid-range value of 24 kbp. When the measured distributions of fragment masses are converted into fragment distributions using the average fragment lengths calculated by PARTRAC, significantly higher yields of DSB related to short fragments were obtained and resulted in a constant relative biological effectiveness (RBE) for DSB induction yield of 2.3 for nitrogen ions at 125–225 keV/μm LET. The previously reported downward trend of the RBE values over this LET range for DSB induction appears to be an artifact of an inadequate average fragment length in the smallest interval.


Scientific Reports | 2015

In vitro γ-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures

Gabriele Babini; Jacopo Morini; G. Baiocco; Luca Mariotti; A. Ottolenghi

The inflammatory pathway has a pivotal role in regulating the fate and functions of cells after a wide range of stimuli, including ionizing radiation. However, the molecular mechanisms governing such responses have not been completely elucidated yet. In particular, the complex activation dynamics of the Nuclear transcription Factor kB (NF-kB), the key molecule governing the inflammatory pathway, still lacks a complete characterization. In this work we focused on the activation dynamics of the NF-kB (subunit p65) pathway following different stimuli. Quantitative measurements of NF-kB were performed and results interpreted within a systems theory approach, based on the negative feedback loop feature of this pathway. Time-series data of nuclear NF-kB concentration showed no evidence of γ-ray induced activation of the pathway for doses up to 5Gy but highlighted important transient effects of common environmental stress (e.g. CO2, temperature) and laboratory procedures, e.g. replacing the culture medium, which dominate the in vitro inflammatory response.


Radiation Research | 2014

Modeling Dose Deposition and DNA Damage Due to Low-Energy β– Emitters

D. Alloni; C. Cutaia; Luca Mariotti; Werner Friedland; A. Ottolenghi

One of the main issues of low-energy internal emitters concerns the very short ranges of the beta particles, versus the dimensions of the biological targets. Depending on the chemical form, the radionuclide may be more concentrated either in the cytoplasm or in the nucleus of the target cell. Consequently, since in most cases conventional dosimetry neglects this issue it may overestimate or underestimate the dose to the nucleus and hence the biological effects. To assess the magnitude of these deviations and to provide a realistic evaluation of the localized energy deposition by low-energy internal emitters, the biophysical track-structure code PARTRAC was used to calculate nuclear doses, DNA damage yields and fragmentation patterns for different localizations of radionuclides in human interphase fibroblasts. The nuclides considered in the simulations were tritium and nickel-63, which emit electrons with average energies of 5.7 (range in water of 0.42 μm) and 17 keV (range of 5 μm), respectively, covering both very short and medium ranges of beta-decay products. The simulation results showed that the largest deviations from the conventional dosimetry occur for inhomogeneously distributed short-range emitters. For uniformly distributed radionuclides selectively in the cytoplasm but excluded from the cell nucleus, the dose in the nucleus is 15% of the average dose in the cell in the case of tritium but 64% for nickel-63. Also, the numbers of double-strand breaks (DSBs) and the distributions of DNA fragments depend on subcellular localization of the radionuclides. In the low- and medium-dose regions investigated here, DSB numbers are proportional to the nuclear dose, with about 50 DSB/Gy for both studied nuclides. In addition, DSB numbers on specific chromosomes depend on the radionuclide localization in the cell as well, with chromosomes located more peripherally in the cell nucleus being more damaged by short-ranged emitters in cytoplasm compared with chromosomes located more centrally. These results illustrate the potential for over- or underestimating the risk associated with low-energy emitters, particularly for tritium intake, when their distribution at subcellular levels is not appropriately considered.


International Journal of Radiation Biology | 2009

Experimental and theoretical analysis of cytokine release for the study of radiation-induced bystander effect.

Angelica Facoetti; Luca Mariotti; Francesca Ballarini; Alessia Bertolotti; Rosanna Nano; Francesca Pasi; Elena Ranza; A. Ottolenghi


Archive | 2008

Role of cellular communication in the pathways of radiation-induced biological damage

F. Ballarini; Angelica Facoetti; Luca Mariotti; Rosanna Nano; A. Ottolenghi

Collaboration


Dive into the Luca Mariotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Campa

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alessia Bertolotti

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Daniele Alloni

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Elena Ranza

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Esposito

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

G. Simone

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge