Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Parca is active.

Publication


Featured researches published by Luca Parca.


Molecular Systems Biology | 2012

Deciphering a global network of functionally associated post-translational modifications

Pablo Minguez; Luca Parca; Francesca Diella; Daniel R. Mende; Runjun Kumar; Manuela Helmer-Citterich; Anne-Claude Gavin; Vera van Noort; Peer Bork

Various post‐translational modifications (PTMs) fine‐tune the functions of almost all eukaryotic proteins, and co‐regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co‐evolution within proteins based on the co‐occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co‐evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane‐associated proteins and in the context of particular protein domains and short‐linear motifs. The global network of co‐evolving PTM types implies a complex and intertwined post‐translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.


Nature | 2015

In situ structural analysis of the human nuclear pore complex

Alexander von Appen; Jan Kosinski; Lenore Sparks; Alessandro Ori; Amanda L. DiGuilio; Benjamin Vollmer; Marie-Therese Mackmull; Niccolò Banterle; Luca Parca; Panagiotis L. Kastritis; Katarzyna Buczak; Shyamal Mosalaganti; Wim J. H. Hagen; Amparo Andrés-Pons; Edward A. Lemke; Peer Bork; Wolfram Antonin; Joseph S. Glavy; Khanh Huy Bui; Martin Beck

Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block—although compositionally identical—engage in different local sets of interactions and conformations.


Nucleic Acids Research | 2012

PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins

Pablo Minguez; Ivica Letunic; Luca Parca; Peer Bork

Post-translational modifications (PTMs) are involved in the regulation and structural stabilization of eukaryotic proteins. The combination of individual PTM states is a key to modulate cellular functions as became evident in a few well-studied proteins. This combinatorial setting, dubbed the PTM code, has been proposed to be extended to whole proteomes in eukaryotes. Although we are still far from deciphering such a complex language, thousands of protein PTM sites are being mapped by high-throughput technologies, thus providing sufficient data for comparative analysis. PTMcode (http://ptmcode.embl.de) aims to compile known and predicted PTM associations to provide a framework that would enable hypothesis-driven experimental or computational analysis of various scales. In its first release, PTMcode provides PTM functional associations of 13 different PTM types within proteins in 8 eukaryotes. They are based on five evidence channels: a literature survey, residue co-evolution, structural proximity, PTMs at the same residue and location within PTM highly enriched protein regions (hotspots). PTMcode is presented as a protein-based searchable database with an interactive web interface providing the context of the co-regulation of nearly 75 000 residues in >10 000 proteins.


Genome Biology | 2016

Spatiotemporal variation of mammalian protein complex stoichiometries

Alessandro Ori; Murat Iskar; Katarzyna Buczak; Panagiotis L. Kastritis; Luca Parca; Amparo Andrés-Pons; Stephan Singer; Peer Bork; Martin Beck

BackgroundRecent large-scale studies revealed cell-type specific proteomes. However, protein complexes, the basic functional modules of a cell, have been so far mostly considered as static entities with well-defined structures. The co-expression of their members has not been systematically charted at the protein level.ResultsWe used measurements of protein abundance across 11 cell types and five temporal states to analyze the co-expression and the compositional variations of 182 well-characterized protein complexes. We show that although the abundance of protein complex members is generally co-regulated, a considerable fraction of all investigated protein complexes is subject to stoichiometric changes. Compositional variation is most frequently seen in complexes involved in chromatin regulation and cellular transport, and often involves paralog switching as a mechanism for the regulation of complex stoichiometry. We demonstrate that compositional signatures of variable protein complexes have discriminative power beyond individual cell states and can distinguish cancer cells from healthy ones.ConclusionsOur work demonstrates that many protein complexes contain variable members that cause distinct stoichometries and functionally fine-tune complexes spatiotemporally. Only a fraction of these compositional variations is mediated by changes in transcription and other mechanisms regulating protein abundance contribute to determine protein complex stoichiometries. Our work highlights the superior power of proteome profiles to study protein complexes and their variants across cell states.


Molecular & Cellular Proteomics | 2015

Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs)

Marie-Therese Mackmull; Murat Iskar; Luca Parca; Stephan Singer; Peer Bork; Alessandro Ori; Martin Beck

Histone deacetylases (HDACs) and acetyltransferases control the epigenetic regulation of gene expression through modification of histone marks. Histone deacetylase inhibitors (HDACi) are small molecules that interfere with histone tail modification, thus altering chromatin structure and epigenetically controlled pathways. They promote apoptosis in proliferating cells and are promising anticancer drugs. While some HDACi have already been approved for therapy and others are in different phases of clinical trials, the exact mechanism of action of this drug class remains elusive. Previous studies have shown that HDACis cause massive changes in chromatin structure but only moderate changes in gene expression. To what extent these changes manifest at the protein level has never been investigated on a proteome-wide scale. Here, we have studied HDACi-treated cells by large-scale mass spectrometry based proteomics. We show that HDACi treatment affects primarily the nuclear proteome and induces a selective decrease of bromodomain-containing proteins (BCPs), the main readers of acetylated histone marks. By combining time-resolved proteome and transcriptome profiling, we show that BCPs are affected at the protein level as early as 12 h after HDACi treatment and that their abundance is regulated by a combination of transcriptional and post-transcriptional mechanisms. Using gene silencing, we demonstrate that the decreased abundance of BCPs is sufficient to mediate important transcriptional changes induced by HDACi. Our data reveal a new aspect of the mechanism of action of HDACi that is mediated by an interplay between histone acetylation and the abundance of BCPs. Data are available via ProteomeXchange with identifier PXD001660 and NCBI Gene Expression Omnibus with identifier GSE64689.


Nucleic Acids Research | 2011

Phosphate binding sites identification in protein structures

Luca Parca; Pier Federico Gherardini; Manuela Helmer-Citterich; Gabriele Ausiello

Nearly half of known protein structures interact with phosphate-containing ligands, such as nucleotides and other cofactors. Many methods have been developed for the identification of metal ions-binding sites and some for bigger ligands such as carbohydrates, but none is yet available for the prediction of phosphate-binding sites. Here we describe Pfinder, a method that predicts binding sites for phosphate groups, both in the form of ions or as parts of other non-peptide ligands, in proteins of known structure. Pfinder uses the Query3D local structural comparison algorithm to scan a protein structure for the presence of a number of structural motifs identified for their ability to bind the phosphate chemical group. Pfinder has been tested on a data set of 52 proteins for which both the apo and holo forms were available. We obtained at least one correct prediction in 63% of the holo structures and in 62% of the apo. The ability of Pfinder to recognize a phosphate-binding site in unbound protein structures makes it an ideal tool for functional annotation and for complementing docking and drug design methods. The Pfinder program is available at http://pdbfun.uniroma2.it/pfinder.


Nucleic Acids Research | 2011

Phosfinder: a web server for the identification of phosphate-binding sites on protein structures

Luca Parca; Iolanda Mangone; Pier Federico Gherardini; Gabriele Ausiello; Manuela Helmer-Citterich

Phosfinder is a web server for the identification of phosphate binding sites in protein structures. Phosfinder uses a structural comparison algorithm to scan a query structure against a set of known 3D phosphate binding motifs. Whenever a structural similarity between the query protein and a phosphate binding motif is detected, the phosphate bound by the known motif is added to the protein structure thus representing a putative phosphate binding site. Predicted binding sites are then evaluated according to (i) their position with respect to the query protein solvent-excluded surface and (ii) the conservation of the binding residues in the protein family. The server accepts as input either the PDB code of the protein to be analyzed or a user-submitted structure in PDB format. All the search parameters are user modifiable. Phosfinder outputs a list of predicted binding sites with detailed information about their structural similarity with known phosphate binding motifs, and the conservation of the residues involved. A graphical applet allows the user to visualize the predicted binding sites on the query protein structure. The results on a set of 52 apo/holo structure pairs show that the performance of our method is largely unaffected by ligand-induced conformational changes. Phosfinder is available at http://phosfinder.bio.uniroma2.it.


PLOS ONE | 2012

Identification of Nucleotide-Binding Sites in Protein Structures: A Novel Approach Based on Nucleotide Modularity

Luca Parca; Pier Federico Gherardini; Mauro Truglio; Iolanda Mangone; Fabrizio Ferrè; Manuela Helmer-Citterich; Gabriele Ausiello

Nucleotides are involved in several cellular processes, ranging from the transmission of genetic information, to energy transfer and storage. Both sequence and structure based methods have been developed to predict the location of nucleotide-binding sites in proteins. Here we propose a novel methodology that leverages the observation that nucleotide-binding sites have a modular structure. Nucleotides are composed of identifiable fragments, i.e. the phosphate, the nucleobase and the carbohydrate moieties. These fragments are bound by specific structural motifs that recur in proteins of different fold. Moreover these motifs behave as modules and are found in different combinations across fold space. Our method predicts binding sites for each nucleotide fragment by comparing a query protein with a database of templates extracted from proteins of known structure. Whenever a similarity is found the fragment bound by the template is transferred on the query protein, thus identifying a putative binding site. Predictions falling inside the surface of the protein are discarded, and the remaining ones are scored using clustering and conservation. The method is able to rank as first a correct prediction in the 48%, 48% and 68% of the analyzed proteins for the nucleobase, carbohydrate and phosphate respectively, while considering the first five predictions the performances change to 71%, 65% and 86% respectively. Furthermore we attempted to reconstruct the full structure of the binding site, starting from the predicted positions of the fragments. We calculated that in the 59% of the analyzed proteins the method ranks as first a reconstructed binding site or a part of it. Finally we tested the reliability of our method in a real world case in which it has to predict nucleotide-binding sites in unbound proteins. We analyzed proteins whose structure has been solved with and without the nucleotide and observed only little variations in the method performance.


PLOS Computational Biology | 2017

Systematic identification of phosphorylation-mediated protein interaction switches.

Matthew J. Betts; Oliver Wichmann; Mathias Utz; Timon Andre; Evangelia Petsalaki; Pablo Minguez; Luca Parca; Frederick P. Roth; Anne-Claude Gavin; Peer Bork; Robert B. Russell

Proteomics techniques can identify thousands of phosphorylation sites in a single experiment, the majority of which are new and lack precise information about function or molecular mechanism. Here we present a fast method to predict potential phosphorylation switches by mapping phosphorylation sites to protein-protein interactions of known structure and analysing the properties of the protein interface. We predict 1024 sites that could potentially enable or disable particular interactions. We tested a selection of these switches and showed that phosphomimetic mutations indeed affect interactions. We estimate that there are likely thousands of phosphorylation mediated switches yet to be uncovered, even among existing phosphorylation datasets. The results suggest that phosphorylation sites on globular, as distinct from disordered, parts of the proteome frequently function as switches, which might be one of the ancient roles for kinase phosphorylation.


Nucleic Acids Research | 2013

Nucleos: a web server for the identification of nucleotide-binding sites in protein structures

Luca Parca; Fabrizio Ferrè; Gabriele Ausiello; Manuela Helmer-Citterich

Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

Collaboration


Dive into the Luca Parca's collaboration.

Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriele Ausiello

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandro Ori

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Martin Beck

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Stephan Singer

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Minguez

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Murat Iskar

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge