Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luca Santuari is active.

Publication


Featured researches published by Luca Santuari.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Spatio-temporal sequence of cross-regulatory events in root meristem growth

Emanuele Scacchi; Paula Salinas; Bojan Gujas; Luca Santuari; Naden T. Krogan; Laura Ragni; Thomas Berleth; Christian S. Hardtke

A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein–protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin–auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3

Stephen Depuydt; Antia Rodriguez-Villalon; Luca Santuari; Céline Wyser-Rmili; Laura Ragni; Christian S. Hardtke

Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Role of NINJA in root jasmonate signaling

Ivan F. Acosta; Debora Gasperini; Aurore Chételat; Stéphanie Stolz; Luca Santuari; Edward E. Farmer

Significance Plant growth, the basis of agricultural production, is compromised when plants defend themselves against herbivores.Wound-induced growth reduction is coordinated between organs by hormones termed “jasmonates.” We developed a sensitive assay that marks tissues where wounding activates jasmonate function in seedlings. This assay showed that a key repressor of jasmonate responses is active mainly in roots where it permits normal growth. A deeper understanding of cell-size control is crucial in successfully engineering plants that display reduced growth restriction under stress. Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.


Current Biology | 2011

Positional Information by Differential Endocytosis Splits Auxin Response to Drive Arabidopsis Root Meristem Growth

Luca Santuari; Emanuele Scacchi; Antia Rodriguez-Villalon; Paula Salinas; Esther M.N. Dohmann; Géraldine Brunoud; Teva Vernoux; Richard S. Smith; Christian S. Hardtke

In the Arabidopsis root meristem, polar auxin transport creates a transcriptional auxin response gradient that peaks at the stem cell niche and gradually decreases as stem cell daughters divide and differentiate [1-3]. The amplitude and extent of this gradient are essential for both stem cell maintenance and root meristem growth [4, 5]. To investigate why expression of some auxin-responsive genes, such as the essential root meristem growth regulator BREVIS RADIX (BRX) [6], deviates from this gradient, we combined experimental and computational approaches. We created cellular-level root meristem models that accurately reproduce distribution of nuclear auxin activity and allow dynamic modeling of regulatory processes to guide experimentation. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and positive autoregulatory feedback through plasma-membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristems division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response.


The Plant Cell | 2013

Expression Quantitative Trait Locus Mapping across Water Availability Environments Reveals Contrasting Associations with Genomic Features in Arabidopsis

David B. Lowry; Tierney L. Logan; Luca Santuari; Christian S. Hardtke; James H. Richards; Leah J. DeRose-Wilson; John K. McKay; Saunak Sen; Thomas E. Juenger

Expression quantitative trait locus mapping in well-watered and drying soil revealed differential gene expression resulting from standing genetic variation, environmental condition, and gene × environment interactions. Genomic features were then shown to be predictive of genetic and environmental variation in gene expression, but in contrasting ways. The regulation of gene expression is crucial for an organism’s development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.


Genome Biology | 2010

Substantial deletion overlap among divergent Arabidopsis genomes revealed by intersection of short reads and tiling arrays

Luca Santuari; Sylvain Pradervand; Amélia Amiguet‐Vercher; Jérôme Thomas; Eavan Dorcey; Keith Harshman; Ioannis Xenarios; Thomas E. Juenger; Christian S. Hardtke

Identification of small polymorphisms from next generation sequencing short read data is relatively easy, but detection of larger deletions is less straightforward. Here, we analyzed four divergent Arabidopsis accessions and found that intersection of absent short read coverage with weak tiling array hybridization signal reliably flags deletions. Interestingly, individual deletions were frequently observed in two or more of the accessions examined, suggesting that variation in gene content partly reflects a common history of deletion events.


Nature plants | 2016

Polarly localized kinase SGN1 is required for Casparian strip integrity and positioning

Julien Alassimone; Satoshi Fujita; Verónica G. Doblas; Maritza van Dop; Marie Barberon; Lothar Kalmbach; Joop E. M. Vermeer; Nelson Rojas-Murcia; Luca Santuari; Christian S. Hardtke; Niko Geldner

Casparian strips are precisely localized and aligned ring-like cell wall modifications in the root of all higher plants. They set up an extracellular diffusion barrier analogous to animal tight junctions, and are crucial for maintaining the homeostatic capacity of plant roots. Casparian strips become localized because of the formation of a highly stable plasma membrane domain, consisting of a family of small transmembrane proteins called Casparian strip membrane domain proteins (CASPs). Here we report a large-scale forward genetic screen directly visualizing endodermal barrier function, which allowed us to identify factors required for the formation and integrity of Casparian strips. We present the identification and characterization of one of the mutants, schengen1 (sgn1), a receptor-like cytoplasmic kinase that we show localizes in a strictly polar fashion to the outer plasma membrane of endodermal cells and is required for the positioning and correct formation of the centrally located CASP domain.


PLOS Genetics | 2012

Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover

Eavan Dorcey; Antia Rodriguez-Villalon; Paula Salinas; Luca Santuari; Sylvain Pradervand; Keith Harshman; Christian S. Hardtke

Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3′ to 5′ exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3–GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3s role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context.


New Phytologist | 2015

The IBO germination quantitative trait locus encodes a phosphatase 2C‐related variant with a nonsynonymous amino acid change that interferes with abscisic acid signaling

Amélia Amiguet‐Vercher; Luca Santuari; Miguel González-Guzmán; Stephen Depuydt; Pedro L. Rodriguez; Christian S. Hardtke

Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.


F1000 Medicine Reports | 2010

The case for resequencing studies of Arabidopsis thaliana accessions: mining the dark matter of natural genetic variation.

Luca Santuari; Christian S. Hardtke

Ultra-high-throughput sequencing (UHTS) techniques are evolving rapidly and may soon become an affordable and routine tool for sequencing plant DNA, even in smaller plant biology labs. Here we review recent insights into intraspecific genome variation gained from UHTS, which offers a glimpse of the rather unexpected levels of structural variability among Arabidopsis thaliana accessions. The challenges that will need to be addressed to efficiently assemble and exploit this information are also discussed.

Collaboration


Dive into the Luca Santuari's collaboration.

Top Co-Authors

Avatar

Christian S. Hardtke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. Juenger

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Ragni

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge