Lucas A. Smolders
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucas A. Smolders.
Spine | 2012
Niklas Bergknut; J.P.H.J. Rutges; Hendrik-Jan C. Kranenburg; Lucas A. Smolders; Ragnvi Hagman; Hendrik-Jan Smidt; Anne-Sofie Lagerstedt; Louis C. Penning; George Voorhout; H.A.W. Hazewinkel; Guy C. M. Grinwis; Laura B. Creemers; Björn P. Meij; Wouter J.A. Dhert
Study Design. Prospective observational and analytic study. Objective. To investigate whether spontaneous intervertebral disc degeneration (IVDD) occurring in both chondrodystrophic (CD) and nonchondrodystrophic dogs (NCD) can be used as a valid translational model for human IVDD research. Summary of Background Data. Different animal models are used in IVDD research, but in most of these models IVDD is induced manually or chemically rather than occurring spontaneously. Methods. A total of 184 intervertebral discs (IVDs) from 19 dogs of different breeds were used. The extent of IVDD was evaluated by macroscopic grading, histopathology, glycosaminoglycan content, and matrix metalloproteinase 2 activity. Canine data were compared with human IVD data acquired in this study or from the literature. Results. Gross pathology of IVDD in both dog types (CD and NCD) and humans showed many similarities, but the cartilaginous endplates were significantly thicker and the subchondral cortices significantly thinner in humans than in dogs. Notochordal cells were still present in the IVDs of adult NCD but were not seen in the CD breeds or in humans. Signs of degeneration were seen in young dogs of CD breeds (<1 year of age), whereas this was only seen in older dogs of NCD breeds (5–7 years of age). The relative glycosaminoglycan content and metalloproteinase 2 activity in canine IVDD were similar to those in humans: metalloproteinase 2 activity increased and glycosaminoglycan content decreased with increasing severity of IVDD. Conclusion. IVDD is similar in humans and dogs. Both CD and NCD breeds may therefore serve as models of spontaneous IVDD for human research. However, as with all animal models, it is important to recognize interspecies differences and, indeed, the intraspecies differences between CD and NCD breeds (early vs. late onset of IVDD, respectively) to develop an optimal canine model of human IVDD.
Veterinary Journal | 2013
Lucas A. Smolders; Niklas Bergknut; Guy C. M. Grinwis; Ragnvi Hagman; Anne-Sofie Lagerstedt; H.A.W. Hazewinkel; Marianna A. Tryfonidou; Björn P. Meij
Dogs can be grouped into two distinct types of breed based on the predisposition to chondrodystrophy, namely, non-chondrodystrophic (NCD) and chondrodystrophic (CD). In addition to a different process of endochondral ossification, NCD and CD breeds have different characteristics of intravertebral disc (IVD) degeneration and IVD degenerative diseases. The anatomy, physiology, histopathology, and biochemical and biomechanical characteristics of the healthy and degenerated IVD are discussed in the first part of this two-part review. This second part describes the similarities and differences in the histopathological and biochemical characteristics of IVD degeneration in CD and NCD canine breeds and discusses relevant aetiological factors of IVD degeneration.
Veterinary Journal | 2013
Niklas Bergknut; Lucas A. Smolders; Guy C. M. Grinwis; Ragnvi Hagman; Anne-Sofie Lagerstedt; H.A.W. Hazewinkel; Marianna A. Tryfonidou; Björn P. Meij
Intervertebral disc (IVD) degeneration is common in dogs and can give rise to a number of diseases, such as IVD herniation, cervical spondylomyelopathy, and degenerative lumbosacral stenosis. Although there have been many reports and reviews on the clinical aspects of canine IVD disease, few reports have discussed and reviewed the process of IVD degeneration. In this first part of a two-part review, the anatomy, physiology, histopathology, and biochemical and biomechanical characteristics of the healthy and degenerated IVD are described. In Part 2, the aspects of IVD degeneration in chondrodystrophic and non-chondrodystrophic dog breeds are discussed in depth.
Arthritis Research & Therapy | 2013
Lucas A. Smolders; Björn P. Meij; David Onis; Frank M. Riemers; Niklas Bergknut; Richard Wubbolts; Guy C. M. Grinwis; Martin Houweling; Marian J. A. Groot Koerkamp; Dik van Leenen; Frank C. P. Holstege; H.A.W. Hazewinkel; Laura B. Creemers; Louis C. Penning; Marianna A. Tryfonidou
IntroductionEarly degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.MethodsDual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age.ResultsEarly IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells.ConclusionsEarly IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.
Journal of Orthopaedic Research | 2012
Lucas A. Smolders; Björn P. Meij; Frank M. Riemers; Ruud Licht; Richard Wubbolts; Douwe van den Heuvel; Guy C. M. Grinwis; Hans Vernooij; H.A.W. Hazewinkel; Louis C. Penning; Marianna A. Tryfonidou
The notochordal cell (NC) of the nucleus pulposus (NP) is considered a potential NP progenitor cell, and early intervertebral disk (IVD) degeneration involves replacement of NCs by chondrocyte‐like cells (CLCs). Wnt/β‐catenin signaling plays a crucial role in maintaining the notochordal fate during embryogenesis, but is also involved in tissue degeneration and regeneration. The canine species, which can be subdivided into non‐chondrodystrophic and chondrodystrophic breeds, is characterized by differential maintenance of the NC: in non‐chondrodystrophic dogs, the NC remains the predominant cell type during the majority of life, with IVD degeneration only occurring at old age; conversely, in chondrodystrophic dogs the NC is lost early in life, with concurrent degeneration of all IVDs. This study investigated Wnt/β‐catenin signaling in the healthy, NC‐rich NP and early degenerated, CLC‐rich NP of both breed types by immunohistochemistry of β‐catenin and relative gene expression of brachyury and cytokeratin 8 (notochordal markers) and Wnt targets axin2, cyclin D1, and c‐myc. Both NCs and CLCs showed nuclear and cytoplasmic β‐catenin protein expression and axin2 gene expression, but β‐catenin signal intensity and Wnt target gene expression were higher in the CLC‐rich NP. Primary NCs in monolayer culture (normoxic conditions) showed Wnt/β‐catenin signaling comparable to the in vivo situation, with increased cyclin D1 and c‐myc gene expression. In conclusion, Wnt/β‐catenin signaling activity in the NC within the NC‐rich NP and in culture supports the role of this cell as a potential progenitor cell; increased Wnt/β‐catenin signaling activity in early IVD degeneration may be a reflection of its dual role.
Tissue Engineering Part C-methods | 2014
Sandra Spillekom; Lucas A. Smolders; Guy C. M. Grinwis; Irene Tm Arkesteijn; Keita Ito; Björn P. Meij; Marianna A. Tryfonidou
Degeneration of the intervertebral disc (IVD) is associated with a loss of notochordal cells (NCs) from the nucleus pulposus (NP) and their replacement by chondrocyte-like cells. NCs are known to maintain extracellular matrix quality and stimulate the chondrocyte-like NP cells, making NCs attractive for designing new tissue engineering approaches for IVD regeneration. However, optimal conditions, such as osmolarity and other characteristics of the culture media, for long-term culture of NCs are not known. The purpose of this study was to investigate the effects of different culture media and osmolarity on the physiology of NCs in vitro. NC clusters isolated from canine IVDs were suspended in alginate beads and cultured at 37°C under normoxic conditions for 28 days. Three different culture conditions were investigated; (1) Dulbeccos modified Eagles medium (DMEM)/F12 (300 mOsm/L), (2) α-MEM (300 mOsm/L), and (3) α-MEM adjusted to 400 mOsm/L to mimic a hyperosmolar environment. NC morphology, expression of genes related to NC markers, matrix production and remodeling, and DNA- and glycosaminoglycan (GAG) analyses were performed on 1, 7, 14, and 28 days in culture. Large, vesicle-containing cells organized in clusters, characterized as NCs, remained present during 28 days for all culture conditions. However, the proportion of the NC clusters decreased over time, whereas the proportion of spindle-shaped cells increased. Gene expression profiling at 7, 14, and 28 days in culture compared to day 1 indicated a initial loss of NC phenotype followed by some recovery of brachyury and aggrecan gene expression after 28 days of culture supporting a potential recovery of NC phenotype. NCs cultured in α-MEM adjusted to 400 mOsm/L showed the highest gene expression of brachyury, cytokeratin 18, and aggrecan, the highest GAG production, and the lowest collagen 1α1 gene expression. In conclusion, NCs cultured in alginate in native cell clusters, partially retained their characteristic morphology and recovered their phenotype in long-term culture. The type of culture medium and medium osmolarity appear to be important factors for culturing NC clusters. These findings provide additional information concerning the maintenance of NCs in vitro that may aid further mechanistic inquiry into the biology of NCs.
Veterinary Journal | 2012
Lucas A. Smolders; Niklas Bergknut; Idsart Kingma; Albert J. van der Veen; Theodoor H. Smit; Levinus Hendrik Koole; Herman Anthonie Willem Hazewinkel; Björn P. Meij
Partial disc replacement is a new surgical technique aimed at restoring functionality to degenerated intervertebral discs (IVDs). The aim of the present study was to assess biomechanically the behaviour of a novel nucleus pulposus prosthesis (NPP) in situ and its ability to restore functionality to the canine IVD after nuclectomy alone or after combined dorsal laminectomy and nuclectomy. Nine canine T13-L5 specimens (L2L3 group) and 10 L5-Cd1 specimens (LS group) were tested biomechanically in the native state, after nuclectomy (L2L3 group) or after combined dorsal laminectomy and nuclectomy (LS group), and after insertion of the NPP. Range of motion (ROM), neutral zone (NZ), and neutral zone stiffness (NZS) were determined in flexion/extension, lateral bending, and axial rotation. Nuclectomy alone and combined dorsal laminectomy and nuclectomy caused significant instability in all motion directions. Implantation of the NPP resulted in significant restoration of the parameters (ROM, NZ, and NZS) towards the native state; however, fragmentation/herniation of the NPP occurred in 47% of the cases. In conclusion, the NPP has the ability to improve functionality of the nuclectomized canine IVD. The high rate of NPP failure requires modifications directed at the integrity of the NPP and its confinement to the nuclear cavity.
Arthritis Research & Therapy | 2015
Irene Tm Arkesteijn; Lucas A. Smolders; Sandra Spillekom; Frank M. Riemers; E Esther Potier; Björn P. Meij; Keita Ito; Marianna A. Tryfonidou
IntroductionEarly degenerative changes in the nucleus pulposus (NP) are observed after the disappearance of notochordal cells (NCs). Thus, it has been suggested that NCs play an important role in maintaining the NP and may have a regenerative potential on other cells of the NP. As the number of resident NP cells (NPCs) decreases in a degenerating disc, mesenchymal stromal (stem) cells (MSCs) may be used for cell supplementation. In this study, using cells of one species, the regenerative potential of canine NCs was assessed in long-term three-dimensional coculture with canine NPCs or MSCs.MethodsCanine NCs and canine NPCs or MSCs were cocultured in alginate beads for 28 days under hypoxic and high-osmolarity conditions. Cell viability, cell morphology and DNA content, extracellular matrix production and expression of genes related to NC markers (Brachyury, KRT18) and NP matrix production (ACAN, COL2A1, COL1A1) were assessed after 1, 15 and 28 days of culture.ResultsNCs did not completely maintain their phenotype (morphology, matrix production, gene expression) during 28 days of culture. In cocultures of NPCs and NCs, both extracellular matrix content and anabolic gene expression remained unchanged compared with monoculture groups, whereas cocultures of MSCs and NCs showed increased glycosaminoglycan/DNA. However, the deposition of these proteoglycans was observed near the NCs and not the MSCs. Brachyury expression in the MSC and NC coculture group increased in time. The latter two findings indicate a trophic effect of MSCs on NCs rather than vice versa.ConclusionsNo regenerative potential of canine NCs on canine NPCs or MSCs was observed in this study. However, significant changes in NC phenotype in long-term culture may have resulted in a suboptimal regenerative potential of these NCs. In this respect, NC-conditioned medium may be better than coculture for future studies of the regenerative potential of NCs.
European Spine Journal | 2012
Lucas A. Smolders; Idsart Kingma; Niklas Bergknut; Albert J. van der Veen; Wouter J.A. Dhert; H.A.W. Hazewinkel; Jaap H. van Dieën; Björn P. Meij
PurposeDogs are often used as an animal model in spinal research, but consideration should be given to the breed used as chondrodystrophic (CD) dog breeds always develop IVD degeneration at an early age, whereas non-chondrodystrophic (NCD) dog breeds may develop IVD degeneration, but only later in life. The aim of this study was to provide a mechanical characterization of the NCD [non-degenerated intervertebral discs (IVDs), rich in notochordal cells] and CD (degenerated IVDs, rich in chondrocyte-like cells) canine spine before and after decompressive surgery (nucleotomy).MethodsThe biomechanical properties of multisegmented lumbar spine specimens (T13–L5 and L5–Cd1) from 2-year-old NCD dogs (healthy) and CD dogs (early degeneration) were investigated in flexion/extension (FE), lateral bending (LB), and axial rotation (AR), in the native state and after nucleotomy of L2–L3 or dorsal laminectomy and nucleotomy of L7–S1. The range of motion (ROM), neutral zone (NZ), and NZ stiffness (NZS) of L1–L2, L2–L3, L6–L7, and L7–S1 were calculated.ResultsIn native spines in both dog groups, the greatest mobility in FE was found at L7–S1, and the greatest mobility in LB at L2–L3. Surgery significantly increased the ROM and NZ, and significantly decreased the NZS in FE, LB, and AR in both breed groups. However, surgery at L2–L3 resulted in a significantly larger increase in NZ and decrease in NZS in the CD spines compared with the NCD spines, whereas surgery at L7–S1 induced a significantly larger increase in ROM and decrease in NZS in the NCD spines compared with the CD spines.ConclusionsSpinal biomechanics significantly differ between NCD and CD dogs and researchers should consider this aspect when using the dog as a model for spinal research.
Veterinary Pathology | 2017
Tove Hansen; Lucas A. Smolders; Marianna A. Tryfonidou; Björn P. Meij; J.C.M. Vernooij; Niklas Bergknut; Guy C. M. Grinwis
Since the seminal work by Hans-Jörgen Hansen in 1952, it has been assumed that intervertebral disc (IVD) degeneration in chondrodystrophic (CD) dogs involves chondroid metaplasia of the nucleus pulposus, whereas in nonchondrodystrophic (NCD) dogs, fibrous metaplasia occurs. However, more recent studies suggest that IVD degeneration in NCD and CD dogs is more similar than originally thought. Therefore, the aim of this study was to compare the histopathology of IVD degeneration in CD and NCD dogs. IVDs with various grades of degeneration (Thompson grade I–III, n = 7 per grade) from both CD and NCD dogs were used (14 CD and 18 NCD dogs, 42 IVDs in total). Sections were scored according to a histological scoring scheme for canine IVD degeneration, including evaluation of the presence of fibrocyte-like cells in the nucleus pulposus. In CD dogs, the macroscopically non-degenerated nucleus pulposus contained mainly chondrocyte-like cells, whereas the non-degenerated nucleus pulposus of NCD dogs mainly contained notochordal cells. The histopathological changes in degenerated discs were similar in CD and NCD dogs and resembled chondroid metaplasia. Fibrocytes were not seen in the nucleus pulposus, indicating that fibrous degeneration of the IVD was not present in any of the evaluated grades of degeneration. In conclusion, intervertebral disc degeneration was characterized by chondroid metaplasia of the nucleus pulposus in both NCD and CD dogs. These results revoke the generally accepted concept that NCD and CD dogs suffer from a different type of IVD degeneration, in veterinary literature often referred to as chondroid or fibroid degeneration, and we suggest that chondroid metaplasia should be used to describe the tissue changes in the IVD in both breed types.