Lucas C. Pinheiro
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucas C. Pinheiro.
Free Radical Biology and Medicine | 2015
Lucas C. Pinheiro; Jefferson H. Amaral; Graziele C. Ferreira; Rafael L. Portella; Carla S. Ceron; Marcelo F. Montenegro; José Carlos Toledo; Jose E. Tanus-Santos
Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors.
Free Radical Biology and Medicine | 2013
Jefferson H. Amaral; Marcelo F. Montenegro; Lucas C. Pinheiro; Graziele C. Ferreira; Rafael P. Barroso; Antonio J. Costa-Filho; Jose E. Tanus-Santos
Orally administered nitrite exerts antihypertensive effects associated with increased gastric nitric oxide (NO) formation. While reducing agents facilitate NO formation from nitrite, no previous study has examined whether antioxidants with reducing properties improve the antihypertensive responses to orally administered nitrite. We hypothesized that TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) could enhance the hypotensive effects of nitrite in hypertensive rats by exerting antioxidant effects (and enhancing NO bioavailability) and by promoting gastric nitrite-derived NO generation. The hypotensive effects of intravenous and oral sodium nitrite were assessed in unanesthetized freely moving rats with L-NAME (N(ω)-nitro-L-arginine methyl ester; 100mg/kg; po)-induced hypertension treated with TEMPOL (18mg/kg; po) or vehicle. While TEMPOL exerted antioxidant effects in hypertensive rats, as revealed by lower plasma 8-isoprostane and vascular reactive oxygen species levels, this antioxidant did not affect the hypotensive responses to intravenous nitrite. Conversely, TEMPOL enhanced the dose-dependent hypotensive responses to orally administered nitrite, and this effect was associated with higher increases in plasma nitrite and lower increases in plasma nitrate concentrations. In vitro experiments using electrochemical and chemiluminescence NO detection under variable pH conditions showed that TEMPOL enhanced nitrite-derived NO formation, especially at low pH (2.0 to 4.0). TEMPOL signal evaluated by electron paramagnetic resonance decreased when nitrite was reduced to NO under acidic conditions. Consistent with these findings, increasing gastric pH with omeprazole (30mg/kg; po) attenuated the hypotensive responses to nitrite and blunted the enhancement in plasma nitrite concentrations and hypotensive effects induced by TEMPOL. Nitrite-derived NO formation in vivo was confirmed by using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), which blunted the responses to oral nitrite. Our results showed that TEMPOL promotes nitrite reduction to NO in the stomach and enhanced plasma nitrite concentrations and the hypotensive effects of oral sodium nitrite through mechanisms critically dependent on gastric pH. Interestingly, the effects of TEMPOL on nitrite-mediated hypotension cannot be explained by increased NO formation in the stomach alone, but rather appear more directly related to increased plasma nitrite levels and reduced nitrate levels during TEMPOL treatment. This may relate to enhanced nitrite uptake or reduced nitrate formation from NO or nitrite.
Redox biology | 2013
Danielle A. Guimaraes; Elen Rizzi; Carla S. Ceron; Lucas C. Pinheiro; Raquel F. Gerlach; Jose E. Tanus-Santos
Nitric oxide (NO)-derived metabolites including the anion nitrite can recycle back to NO and thus complement NO formation independent of NO synthases. While nitrite is as a major vascular storage pool and source of NO, little is known about drugs that increase tissue nitrite concentrations. This study examined the effects of atorvastatin or sildenafil, or the combination, on vascular nitrite concentrations and on endothelial dysfunction in the 2 kidney-1 clip (2K1C) hypertension model. Sham-operated or 2K1C hypertensive rats were treated with vehicle, atorvastatin (50 mg/Kg), sildenafil (45 mg/Kg), or both for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Nitrite concentrations were assessed in the aortas and in plasma samples by ozone-based reductive chemiluminescence assay. Aortic rings were isolated to assess endothelium-dependent and independent relaxation. Aortic NADPH activity and ROS production were evaluated by luminescence and dihydroethidium, respectively, and plasma TBARS levels were measured. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. Atorvastatin and sildenafil, alone or combined, significantly lowered SBP by approximately 40 mmHg. Atorvastatin significantly increased vascular nitrite levels by 70% in hypertensive rats, whereas sildenafil had no effects. Both drugs significantly improved the vascular function, and decreased vascular NADPH activity, ROS, and nitrotyrosine levels. Lower plasma TBARS concentrations were found with both treatments. The combination of drugs showed no improved responses compared to each drug alone. These findings show evidence that atorvastatin, but not sildenafil, increases vascular NO stores, although both drugs exert antioxidant effects, improve endothelial function, and lower blood pressure in 2K1C hypertension.
Redox biology | 2015
Jefferson H. Amaral; Graziele C. Ferreira; Lucas C. Pinheiro; Marcelo F. Montenegro; Jose E. Tanus-Santos
Hypertension is a common disease that includes oxidative stress as a major feature, and oxidative stress impairs physiological nitric oxide (NO) activity promoting cardiovascular pathophysiological mechanisms. While inorganic nitrite and nitrate are now recognized as relevant sources of NO after their bioactivation by enzymatic and non-enzymatic pathways, thus lowering blood pressure, mounting evidence suggests that sodium nitrite also exerts antioxidant effects. Here we show for the first time that sodium nitrite exerts consistent systemic and vascular antioxidant and antihypertensive effects in the deoxycorticosterone-salt (DOCA-salt) hypertension model. This is particularly important because increased oxidative stress plays a major role in the DOCA-salt hypertension model, which is less dependent on activation of the renin-angiotensin system than other hypertension models. Indeed, antihypertensive effects of oral nitrite were associated with increased plasma nitrite and nitrate concentrations, and completely blunted hypertension-induced increases in plasma 8-isoprostane and lipid peroxide levels, in vascular reactive oxygen species, in vascular NADPH oxidase activity, and in vascular xanthine oxidoreductase activity. Together, these findings provide evidence that the oral administration of sodium nitrite consistently decreases the blood pressure in association with major antioxidant effects in experimental hypertension.
Nitric Oxide | 2014
Lucas C. Pinheiro; Jefferson H. Amaral; Graziele C. Ferreira; Marcelo F. Montenegro; Gustavo H. Oliveira-Paula; Jose E. Tanus-Santos
Nitrite-derived nitric oxide (NO) formation exerts antihypertensive effects. Because NO inhibits angiotensin converting enzyme (ACE) activity, we carried a comprehensive series of experiments in rats to test the hypothesis that sodium nitrite exerts antihypertensive effects by inhibiting ACE. We examined whether sodium nitrite (15 mg/kg; or vehicle; by gavage): (I) attenuates the pressor responses to angiotensin I at doses of 0.03, 0.1, 0.3, 1, 3, and 10 μg/kg intravenously; (II) attenuates the acute hypertension induced by L-NAME (100 mg/kg; or vehicle; by gavage); (III) attenuates the chronic hypertension induced by L-NAME (1 g/L in drinking water; or vehicle) administered for 6 weeks; (IV) attenuates the hypertension in the 2 kidney-1 clip (2K1C) chronic hypertension model. Blood samples were collected at the end of each study and plasma angiotensin converting enzyme (ACE) activity was measured with a fluorimetric assay using Hippuryl-His-Leu as substrate. ACE inhibitors were used as positive controls. Plasma nitrite concentrations were measured by ozone-based reductive chemiluminescence. The in vitro effects of sodium nitrite (0, 1, 3, 10, 30, 100 μmol/L) on plasma ACE activity were also determined. We found that sodium nitrite did not affect the pressor responses to angiotensin I. Moreover, while sodium nitrite exerted significant antihypertensive effects in acute and chronic hypertension models, no significant effects on plasma ACE activity were found. In vitro experiments showed no effects of sodium nitrite on plasma ACE activity. This is the first study to demonstrate that the acute and chronic antihypertensive effects of sodium nitrite are not associated with significant inhibition of circulating ACE activity.
Free Radical Biology and Medicine | 2014
Elen Rizzi; Danielle A. Guimaraes; Carla S. Ceron; Cibele M. Prado; Lucas C. Pinheiro; Alisson Martins-Oliveira; Raquel F. Gerlach; Jose E. Tanus-Santos
Hypertension induces left-ventricular hypertrophy (LVH) by mechanisms involving oxidative stress and unbalanced cardiac matrix metalloproteinase (MMP) activity. We hypothesized that β1-adrenergic receptor blockers with antioxidant properties (nebivolol) could reverse hypertension-induced LVH more effectively than conventional β1-blockers (metoprolol) when used at doses that exert similar antihypertensive effects. Two-kidney one-clip (2K1C) hypertension was induced in male Wistar rats. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg(-1)day(-1)) or metoprolol (20 mg kg(-1)day(-1)) for 4 weeks. Systolic blood pressure was monitored weekly by tail-cuff plethysmography. LV structural changes and fibrosis were studied in hematoxylin/eosin- and picrosirius-stained sections, respectively. Cardiac MMP levels and activity were determined by in situ zymography, gel zymography, and immunofluorescence. Dihydroethidium and lucigenin-derived chemiluminescence assays were used to assess cardiac reactive oxygen species (ROS) production. Nitrotyrosine levels were determined in LV samples by immunohistochemistry and green fluorescence and were evaluated using the ImageJ software. Cardiac protein kinase B/Akt (AKT) phosphorylation state was assessed by Western blot. Both β-blockers exerted similar antihypertensive effects and attenuated hypertension-induced cardiac remodeling. Both drugs reduced myocyte hypertrophy and collagen deposition in 2K1C rats. These effects were associated with lower cardiac ROS and nitrotyrosine levels and attenuation of hypertension-induced increases in cardiac MMP-2 levels and in situ gelatinolytic activity after treatment with both β-blockers. Whereas hypertension increased AKT phosphorylation, no effects were found with β-blockers. In conclusion, we found evidence that two β1-blockers with different properties attenuate hypertension-induced LV hypertrophy and cardiac collagen deposition in association with significant cardiac antioxidant effects and MMP-2 downregulation, thus suggesting a critical role for β1-adrenergic receptors in mediating those effects. Nebivolol is not superior to metoprolol, at least with respect to their capacity to reverse hypertension-induced LVH.
Journal of Cellular and Molecular Medicine | 2013
Lorena M. Amaral; Lucas C. Pinheiro; Danielle A. Guimaraes; Ana C.T. Palei; Jonas T. Sertório; Rafael L. Portella; Jose E. Tanus-Santos
Upregulation of inducible nitric oxide synthase (iNOS) has been reported in both experimental and clinical hypertension. However, although pro‐inflammatory cytokines that up‐regulate iNOS contribute to pre‐eclampsia, no previous study has tested the hypothesis that a selective iNOS inhibitor (1400 W) could exert antihypertensive effects associated with decreased iNOS expression and nitrosative stress in pre‐eclampsia. This study examined the effects of 1400 W in the reduced uteroplacental perfusion pressure (RUPP) placental ischaemia animal model and in normal pregnant rats. Sham‐operated and RUPP rats were treated with daily vehicle or 1 mg/kg/day N‐[3‐(Aminomethyl) benzyl] acetamidine (1400 W) subcutaneously for 5 days. Plasma 8‐isoprostane levels, aortic reactive oxygen species (ROS) levels and nicotinamide adenine dinucleotide phosphate (NADPH)‐dependent ROS production were evaluated by ELISA, dihydroethidium fluorescence microscopy and lucigenin chemiluminescence respectively. Inducible nitric oxide synthase expression was assessed by western blotting analysis and aortic nitrotyrosine was evaluated by immunohistochemistry. Mean arterial blood pressure increased by ~30 mmHg in RUPP rats, and 1400 W attenuated this increase by ~50% (P < 0.05). While RUPP increased plasma 8‐isoprostane levels, aortic ROS levels, and NADPH‐dependent ROS production (P < 0.05), treatment with 1400 W blunted these alterations (P < 0.05). Moreover, while RUPP increased iNOS expression and aortic nitrotyrosine levels (P < 0.05), treatment with 1400 W blunted these alterations (P < 0.05). These results clearly implicate iNOS in the hypertension associated with RUPP. Our findings may suggest that iNOS inhibitors could be clinically useful in the therapy of pre‐eclampsia, especially in particular groups of patients genetically more prone to express higher levels of iNOS. This issue deserves further confirmation.
DNA and Cell Biology | 2011
Vanessa de Almeida Belo; Debora C. Souza-Costa; Marcelo R. Luizon; Tatiane C. Izidoro-Toledo; Carla Márcia Moreira Lanna; Lucas C. Pinheiro; Jose E. Tanus-Santos
Expansion of adipose tissue in obesity is associated with angiogenesis and adipose tissue mass depends on neovascularization. Vascular endothelial growth factor (VEGF) is the main angiogenic factor in the adipose tissue, and VEGF expression is tightly regulated at both transcriptional and translational levels. However, no previous study has tested the hypothesis that genetic polymorphisms in the VEGF gene could affect susceptibility to obesity. To test this hypothesis, we compared the distribution of genotypes and haplotypes including three VEGF genetic polymorphisms in obese children and adolescents with those found in healthy controls. We studied 172 healthy children and adolescents and 113 obese children and adolescents. Genotypes of three clinically relevant VEGF polymorphisms in the promoter region (C-2578A, G-1154A, and G-634C) of the VEGF gene were determined by TaqMan allele discrimination assay and real-time polymerase chain reaction. VEGF haplotypes were inferred using Haplo.stats and PHASE 2.1 programs. We found no differences in the distributions of VEGF genotypes and alleles (p > 0.05). However, the CAG haplotype was more frequent in the obese group than in the control group (4% versus 0%, respectively, in white subjects; p = 0.008; odds ratio = 10.148 (95% confidence interval: 1.098-93.788). Our findings suggest that VEGF haplotypes affect susceptibility to obesity in children and adolescents.
Redox biology | 2016
Lucas C. Pinheiro; Gustavo H. Oliveira-Paula; Rafael L. Portella; Danielle A. Guimaraes; Celio D. Angelis; Jose E. Tanus-Santos
Proton pump inhibitors (PPIs) are widely used drugs that may increase the cardiovascular risk by mechanisms not entirely known. While PPIs increase asymmetric dimethylarginine (ADMA) levels and inhibit nitric oxide production, it is unknown whether impaired vascular redox biology resulting of increased xanthine oxidoreductase (XOR) activity mediates PPIs-induced endothelial dysfunction (ED). We examined whether increased XOR activity impairs vascular redox biology and causes ED in rats treated with omeprazole. We also examined whether omeprazole aggravates the ED found in hypertension. Treatment with omeprazole reduced endothelium-dependent aortic responses to acetylcholine without causing hypertension. However, omeprazole did not aggravate two-kidney, one-clip (2K1C) hypertension, nor hypertension-induced ED. Omeprazole and 2K1C increased vascular oxidative stress as assessed with dihydroethidium (DHE), which reacts with superoxide, and by the lucigenin chemiluminescence assay. The selective XOR inhibitor febuxostat blunted both effects induced by omeprazole. Treatment with omeprazole increased plasma ADMA concentrations, XOR activity and systemic markers of oxidative stress. Incubation of aortic rings with ADMA increased XOR activity, DHE fluorescence and lucigenin chemiluminescence signals, and febuxostat blunted these effects. Providing functional evidence that omeprazole causes ED by XOR-mediated mechanisms, we found that febuxostat blunted the ED caused by omeprazole treatment. This study shows that treatment with omeprazole impairs the vascular redox biology by XOR-mediated mechanisms leading to ED. While omeprazole did not further impair hypertension-induced ED, further studies in less severe animal models are warranted. Our findings may have major relevance, particularly to patients with cardiovascular diseases taking PPIs.
Expert Opinion on Therapeutic Targets | 2017
Lucas C. Pinheiro; Jose E. Tanus-Santos; Michele M. Castro
ABSTRACT Introduction: Hypertension is a leading cause of morbidity and mortality worldwide. A major pathophysiological factor contributing to hypertension is reduced nitric oxide (NO) bioavailability. Strategies to address this pathophysiological mechanism could offer significant advantages. Areas covered: In this review we aimed at examining a variety of drugs (statins, beta-adrenergic receptor blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II type-1 receptor blockers) used to treat hypertension and other cardiovascular diseases, particularly with respect to their potential of increasing NO bioavailability and activity in the cardiovascular system. There is now evidence supporting the notion that many cardiovascular drugs activate NO signaling or enhance NO bioavailability as a contributing mechanism to their beneficial cardiovascular effects. Moreover, other drugs may attenuate NO inactivation by superoxide and other reactive oxygen species by exerting antioxidant effects. More recently, the NO oxidation products nitrite and nitrate have been acknowledged as sources of NO after recycling back to NO. Activation of the nitrate-nitrite-NO pathway is an alternate pathway that may generate NO from both anions and exert antihypertensive effects. Expert opinion: In this review, we provide an overview of the possible mechanisms by which these drugs enhance NO bioavailability and help in the therapy of hypertension.