Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael L. Portella is active.

Publication


Featured researches published by Rafael L. Portella.


Free Radical Biology and Medicine | 2015

Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension

Lucas C. Pinheiro; Jefferson H. Amaral; Graziele C. Ferreira; Rafael L. Portella; Carla S. Ceron; Marcelo F. Montenegro; José Carlos Toledo; Jose E. Tanus-Santos

Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors.


Journal of Cellular and Molecular Medicine | 2013

Antihypertensive effects of inducible nitric oxide synthase inhibition in experimental pre-eclampsia.

Lorena M. Amaral; Lucas C. Pinheiro; Danielle A. Guimaraes; Ana C.T. Palei; Jonas T. Sertório; Rafael L. Portella; Jose E. Tanus-Santos

Upregulation of inducible nitric oxide synthase (iNOS) has been reported in both experimental and clinical hypertension. However, although pro‐inflammatory cytokines that up‐regulate iNOS contribute to pre‐eclampsia, no previous study has tested the hypothesis that a selective iNOS inhibitor (1400 W) could exert antihypertensive effects associated with decreased iNOS expression and nitrosative stress in pre‐eclampsia. This study examined the effects of 1400 W in the reduced uteroplacental perfusion pressure (RUPP) placental ischaemia animal model and in normal pregnant rats. Sham‐operated and RUPP rats were treated with daily vehicle or 1 mg/kg/day N‐[3‐(Aminomethyl) benzyl] acetamidine (1400 W) subcutaneously for 5 days. Plasma 8‐isoprostane levels, aortic reactive oxygen species (ROS) levels and nicotinamide adenine dinucleotide phosphate (NADPH)‐dependent ROS production were evaluated by ELISA, dihydroethidium fluorescence microscopy and lucigenin chemiluminescence respectively. Inducible nitric oxide synthase expression was assessed by western blotting analysis and aortic nitrotyrosine was evaluated by immunohistochemistry. Mean arterial blood pressure increased by ~30 mmHg in RUPP rats, and 1400 W attenuated this increase by ~50% (P < 0.05). While RUPP increased plasma 8‐isoprostane levels, aortic ROS levels, and NADPH‐dependent ROS production (P < 0.05), treatment with 1400 W blunted these alterations (P < 0.05). Moreover, while RUPP increased iNOS expression and aortic nitrotyrosine levels (P < 0.05), treatment with 1400 W blunted these alterations (P < 0.05). These results clearly implicate iNOS in the hypertension associated with RUPP. Our findings may suggest that iNOS inhibitors could be clinically useful in the therapy of pre‐eclampsia, especially in particular groups of patients genetically more prone to express higher levels of iNOS. This issue deserves further confirmation.


Redox biology | 2016

Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction

Lucas C. Pinheiro; Gustavo H. Oliveira-Paula; Rafael L. Portella; Danielle A. Guimaraes; Celio D. Angelis; Jose E. Tanus-Santos

Proton pump inhibitors (PPIs) are widely used drugs that may increase the cardiovascular risk by mechanisms not entirely known. While PPIs increase asymmetric dimethylarginine (ADMA) levels and inhibit nitric oxide production, it is unknown whether impaired vascular redox biology resulting of increased xanthine oxidoreductase (XOR) activity mediates PPIs-induced endothelial dysfunction (ED). We examined whether increased XOR activity impairs vascular redox biology and causes ED in rats treated with omeprazole. We also examined whether omeprazole aggravates the ED found in hypertension. Treatment with omeprazole reduced endothelium-dependent aortic responses to acetylcholine without causing hypertension. However, omeprazole did not aggravate two-kidney, one-clip (2K1C) hypertension, nor hypertension-induced ED. Omeprazole and 2K1C increased vascular oxidative stress as assessed with dihydroethidium (DHE), which reacts with superoxide, and by the lucigenin chemiluminescence assay. The selective XOR inhibitor febuxostat blunted both effects induced by omeprazole. Treatment with omeprazole increased plasma ADMA concentrations, XOR activity and systemic markers of oxidative stress. Incubation of aortic rings with ADMA increased XOR activity, DHE fluorescence and lucigenin chemiluminescence signals, and febuxostat blunted these effects. Providing functional evidence that omeprazole causes ED by XOR-mediated mechanisms, we found that febuxostat blunted the ED caused by omeprazole treatment. This study shows that treatment with omeprazole impairs the vascular redox biology by XOR-mediated mechanisms leading to ED. While omeprazole did not further impair hypertension-induced ED, further studies in less severe animal models are warranted. Our findings may have major relevance, particularly to patients with cardiovascular diseases taking PPIs.


Free Radical Biology and Medicine | 2016

Oral nitrite circumvents antiseptic mouthwash-induced disruption of enterosalivary circuit of nitrate and promotes nitrosation and blood pressure lowering effect

Lucas C. Pinheiro; Graziele C. Ferreira; Jefferson H. Amaral; Rafael L. Portella; Sandra O. Conde Tella; Madla A. Passos; Jose E. Tanus-Santos

The nitric oxide (NO•) metabolites nitrite and nitrate exert antihypertensive effects by mechanisms that involve gastric formation of S-nitrosothiols. However, while the use of antiseptic mouthwash (AM) is known to attenuate the responses to nitrate by disrupting its enterosalivary cycle, there is little information about whether AM attenuates the effects of orally administered nitrite. We hypothesized that the antihypertensive effects of orally administered nitrite would not be prevented by AM because, in contrast to oral nitrate, oral nitrite could promote S-nitrosothiols formation in the stomach without intereference by AM. Chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats (and normotensive controls) treated with AM (or vehicle) once/day. We found that orally administered nitrite exerts antihypertensive effects that were not affected by AM. This finding contrasts with lack of antihypertensive responses to oral nitrate in 2K1C hypertensive rats treated with AM. Nitrite and nitrate treatments increased plasma nitrites, nitrates, and S-nitrosothiols concentrations. However, while treatment with AM attenuated the increases in plasma nitrite concentrations after both nitrite and nitrate treatments, AM attenuated the increases in S-nitrosothiols in nitrate-treated rats, but not in nitrite-treated rats. Moreover, AM attenuated vascular S-nitrosylation (detected by the SNO-RAC method) after nitrate, but not after nitrite treatment. Significant correlations were found between the hypotensive responses and S-nitrosothiols, and vascular S-nitrosylation levels. These results show for the first time that oral nitrite exerts antihypertensive effects notwithstanding the fact that antiseptic mouthwash disrupts the enterosalivary circulation of nitrate. Our results support a major role for S-nitrosothiols formation resulting in vascular S-nitrosylation as a key mechanism for the antihypertensive effects of both oral nitrite and nitrate.


Redox biology | 2017

Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite

Célio Damacena-Angelis; Gustavo H. Oliveira-Paula; Lucas C. Pinheiro; Eduardo J. Crevelin; Rafael L. Portella; Luiz Alberto Beraldo Moraes; Jose E. Tanus-Santos

Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the Michaelis constant. Together, our results show that nitrate inhibits XOR-mediated NO production from nitrite, and this mechanism may explain how nitrate attenuates the vascular and blood pressure responses to nitrite.


Thrombosis Research | 2013

The antioxidant tempol decreases acute pulmonary thromboembolism-induced hemolysis and nitric oxide consumption.

Evandro M. Neto-Neves; Karina C. Ferraz; Jonas T. Sertório; Rafael L. Portella; Jose E. Tanus-Santos

INTRODUCTION Acute pulmonary thromboembolism (APT) is a critical condition associated with acute pulmonary hypertension. Recent studies suggest that oxidative stress and hemolysis contribute to APT-induced pulmonary hypertension, possibly as a result of increased nitric oxide (NO) consumption. We hypothesized that the antioxidant tempol could attenuate APT-induced hemolysis, and therefore attenuate APT-induced increases in plasma NO consumption. MATERIALS AND METHODS APT was induced in anesthetized sheep with autologous blood clots. The hemodynamic effects of tempol infused at 1.0mg/kg/min 30 min after APT were determined. Hemodynamic measurements were carried out every 15 min. To assess oxidative stress, serum 8-isoprostanes levels were measured by ELISA. Plasma cell-free hemoglobin concentrations and NO consumption by plasma samples were determined. An in vitro oxidative AAPH-induced hemolysis assay was used to further validate the in vivo effects of tempol. RESULTS APT caused pulmonary hypertension, and increased pulmonary vascular resistance in proportion with the increases in 8-isoprostanes, plasma cell-free hemoglobin concentrations, and NO consumption by plasma (all P<0.05). Tempol attenuated the hemodynamic alterations by approximately 15-20% and blunted APT-induced increases in 8-isoprostanes, in cell-free hemoglobin concentrations, and the increases in NO consumption by plasma (P<0.05). Tempol dose-dependently attenuated AAPH-induced in vitro hemolysis (P<0.05). CONCLUSIONS Our findings are consistent with the idea that antioxidant properties of tempol decrease APT-induced hemolysis and nitric oxide consumption, thus attenuating APT-induced pulmonary hypertension.


Reproductive Sciences | 2018

Effect of Physical Exercise on Endometriosis Experimentally Induced in Rats

M. Montenegro; Camila M. Bonocher; Juliana Meola; Rafael L. Portella; Alfredo Ribeiro-Silva; Mariangela O. Brunaldi; Rui Alberto Ferriani; J.C. Rosa-e-Silva

Objective: Endometriosis is characterized by the growth of endometrial tissue outside the uterine cavity. The prevalence of endometriosis among women experiencing pain, infertility, or both is as high as 35% to 50%. The most common symptoms of endometriosis are dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility. Evidence has suggested that endometriosis symptoms result from a local inflammatory peritoneal reaction caused by ectopic endometrial implants that undergo cyclic bleeding. On the other hand, regular physical exercise seems to have protective effects against diseases that involve inflammatory processes such as type 2 diabetes and colon and breast cancer. On this basis, it is possible that the practice of physical exercise may have beneficial effects on endometriosis. Therefore, the objective of this study was to evaluate the possible anti-inflammatory effect of physical exercise on endometriosis experimentally induced in rats. Study Design: Seventy female Wistar rats were divided into 7groups of 10 animals each. Animals performed light exercise (swimming once a week), moderate exercise (swimming 3 times a week), and intense exercise (swimming 5 times a week) before or after endometriosis induction. Results: At the end of the experimental protocol, a reduction in the size of endometriotic lesions was observed after physical exercise regardless of its frequency, with a greater reduction in the groups practicing moderate and intense activity; an increase in FAS levels and a decrease in matrix metalloproteinases 9 and proliferating cell nuclear antigen (PCNA)levels was also observed. The immunohistochemistry results did not lead to conclusive results. As expected, oxidative stress was reduced in all groups. These results show that the practice of physical exercise could be beneficial, at least in part, for the treatment of endometriosis.


Naunyn-schmiedebergs Archives of Pharmacology | 2014

Vascular xanthine oxidoreductase contributes to the antihypertensive effects of sodium nitrite in L-NAME hypertension

Marcelo F. Montenegro; Lucas C. Pinheiro; Jefferson H. Amaral; Graziele C. Ferreira; Rafael L. Portella; Jose E. Tanus-Santos


Free Radical Biology and Medicine | 2016

Nitrite Inhibits Mitochondrial Phosphodiesterase and Activates CAMP-PKA-AKAP1 Signaling to Modulate Mitochondrial Function and Cytoprotection in Normoxia

Danielle Guimaraes; Rafael L. Portella; Christelle Kamga Pride; Jose E. Tanus-Santos; Sruti Shiva


Nitric Oxide | 2014

P171 – Nitrite enhances mitochondrial respiration through protein kinase A activation in normoxia

Rafael L. Portella; Christelle Kamga; Jose E. Tanus-Santos; Sruti Shiva

Collaboration


Dive into the Rafael L. Portella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonas T. Sertório

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Sruti Shiva

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge