Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucas Farnung is active.

Publication


Featured researches published by Lucas Farnung.


Nature Communications | 2014

The structure and substrate specificity of human Cdk12/Cyclin K

Christian A. Bösken; Lucas Farnung; Corinna Hintermair; Miriam Merzel Schachter; Karin Vogel-Bachmayr; Kanchan Anand; Robert P. Fisher; Dirk Eick; Matthias Geyer

Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases.


Nature | 2017

Nucleosome–Chd1 structure and implications for chromatin remodelling

Lucas Farnung; Seychelle M. Vos; Christoph Wigge; Patrick Cramer

Chromatin-remodelling factors change nucleosome positioning and facilitate DNA transcription, replication, and repair. The conserved remodelling factor chromodomain-helicase-DNA binding protein 1(Chd1) can shift nucleosomes and induce regular nucleosome spacing. Chd1 is required for the passage of RNA polymerase IIthrough nucleosomes and for cellular pluripotency. Chd1 contains the DNA-binding domains SANT and SLIDE, a bilobal motor domain that hydrolyses ATP, and a regulatory double chromodomain. Here we report the cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 Å. Chd1 detaches two turns of DNA from the histone octamer and binds between the two DNA gyres in a state poised for catalysis. The SANT and SLIDE domains contact detached DNA around superhelical location (SHL) −7 of the first DNA gyre. The ATPase motor binds the second DNA gyre at SHL +2 and is anchored to the N-terminal tail of histone H4, as seen in a recent nucleosome–Snf2 ATPase structure. Comparisons with published results reveal that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure. The ATPase can then promote translocation of DNA towards the nucleosome dyad, thereby loosening the first DNA gyre and remodelling the nucleosome. Translocation may involve ratcheting of the two lobes of the ATPase, which is trapped in a pre- or post-translocation state in the absence or presence, respectively, of transition state-mimicking compounds.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Nucleosomal arrangement affects single-molecule transcription dynamics

Veronika Fitz; Jaeoh Shin; Christoph Ehrlich; Lucas Farnung; Patrick Cramer; Vasily Zaburdaev; Stephan W. Grill

Significance Transcription is the first step toward protein production. During transcription, a polymerase enzyme moves along DNA and copies it to RNA. In the cell, DNA is highly compacted: roughly 150 bp of DNA is wrapped around histone proteins to form a nucleosome. However, little is known about how closely spaced nucleosomes impact polymerase transcription. We performed single-molecule optical tweezers transcription experiments on dinucleosomal DNA templates. We show that the effect of the second nucleosome on polymerase transcription efficiency through the first one depends on the internucleosomal spacing and the rotational arrangement of the nucleosomes on the helical DNA template. Our findings provide insights into how DNA compaction affects transcription in vitro. In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Mechanism of RNA polymerase II stalling by DNA alkylation.

Stefano Malvezzi; Lucas Farnung; Claudia M.N. Aloisi; Todor Angelov; Patrick Cramer; Shana J. Sturla

Significance RNA polymerase II (Pol II) catalyzes the transcription of DNA to RNA in the nucleus. DNA alkylating cancer drugs can stall transcription; however, the basis for Pol II stalling when encountering a DNA template with minor-groove alkylation adducts has remained elusive due to its inherent chemical instability. We characterized the behavior of Pol II in transcription over minor-groove alkylation adducts and uncovered a previously unobserved mode of Pol II stalling wherein clashes between DNA adducts and the mobile trigger loop of RNA Pol II prevent translocation of the enzyme after nucleotide insertion. These results provide a molecular basis for how DNA damage in transcribed portions of the genome initiates DNA repair contributing to drug resistance. Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and trigger transcription-coupled nucleotide excision repair. Here we show how different forms of DNA alkylation impair transcription by RNA Pol II in cells and with the isolated enzyme and unravel a mode of RNA Pol II stalling that is due to alkylation of DNA in the minor groove. We incorporated a model for acylfulvene adducts, the stable 3-deaza-3-methoxynaphtylethyl-adenosine analog (3d-Napht-A), and smaller 3-deaza-adenosine analogs, into DNA oligonucleotides to assess RNA Pol II transcription elongation in vitro. RNA Pol II was strongly blocked by a 3d-Napht-A analog but bypassed smaller analogs. Crystal structure analysis revealed that a DNA base containing 3d-Napht-A can occupy the +1 templating position and impair closing of the trigger loop in the Pol II active center and polymerase translocation into the next template position. These results show how RNA Pol II copes with minor-groove DNA alkylation and establishes a mechanism for drug resistance.


bioRxiv | 2018

Structure of transcribing RNA polymerase II-nucleosome complex

Lucas Farnung; Seychelle M. Vos; Patrick Cramer

Transcription of eukaryotic protein-coding genes requires passage of RNA polymerase II (Pol II) through chromatin. Pol II passage is impaired by nucleosomes and requires elongation factors that help Pol II to efficiently overcome the nucleosomal barrier1-4. How the Pol II machinery transcribes through a nucleosome remains unclear because structural studies have been limited to Pol II elongation complexes formed on DNA templates lacking nucleosomes5. Here we report the cryo-electron microscopy (cryo-EM) structure of transcribing Pol II from the yeast Saccharomyces cerevisiae engaged with a downstream nucleosome core particle (NCP) at an overall resolution of 4.4 Å with resolutions ranging from 4-6 Å in Pol II and 6-8 Å in the NCP. Pol II and the NCP adopt a defined orientation that could not be predicted from modelling. Pol II contacts DNA of the incoming NCP on both sides of the nucleosomal dyad with its domains ‘clamp head’ and ‘lobe’. Comparison of the Pol II-NCP structure to known structures of Pol II complexes reveals that the elongation factors TFIIS, DSIF, NELF, PAF1 complex, and SPT6 can be accommodated on the Pol II surface in the presence of the oriented nucleosome. Further structural comparisons show that the chromatin remodelling enzyme Chd1, which is also required for efficient Pol II passage6,7, could bind the oriented nucleosome with its motor domain. The DNA-binding region of Chd1 must however be released from DNA when Pol II approaches the nucleosome, and based on published data8,9 this is predicted to stimulate Chd1 activity and to facilitate Pol II passage. Our results provide a starting point for a mechanistic analysis of chromatin transcription.


Journal of Biological Chemistry | 2018

Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin.

Xiangyang Liu; Lucas Farnung; Christoph Wigge; Patrick Cramer

RNA polymerase II (Pol II) is the central enzyme that transcribes eukaryotic protein-coding genes to produce mRNA. The mushroom toxin α-amanitin binds Pol II and inhibits transcription at the step of RNA chain elongation. Pol II from yeast binds α-amanitin with micromolar affinity, whereas metazoan Pol II enzymes exhibit nanomolar affinities. Here, we present the high-resolution cryo-EM structure of α-amanitin bound to and inhibited by its natural target, the mammalian Pol II elongation complex. The structure revealed that the toxin is located in a pocket previously identified in yeast Pol II but forms additional contacts with metazoan-specific residues, which explains why its affinity to mammalian Pol II is ∼3000 times higher than for yeast Pol II. Our work provides the structural basis for the inhibition of mammalian Pol II by the natural toxin α-amanitin and highlights that cryo-EM is well suited to studying interactions of a small molecule with its macromolecular target.


Nature | 2018

Structure of activated transcription complex Pol II-DSIF-PAF-SPT6

Seychelle M. Vos; Lucas Farnung; Marc Boehning; Christoph Wigge; Andreas Linden; Henning Urlaub; Patrick Cramer


Nature | 2018

Structure of paused transcription complex Pol II–DSIF–NELF

Seychelle M. Vos; Lucas Farnung; Henning Urlaub; Patrick Cramer


Nature | 2018

The interaction landscape between transcription factors and the nucleosome

Fangjie Zhu; Lucas Farnung; Eevi Kaasinen; Biswajyoti Sahu; Yimeng Yin; Bei Wei; Svetlana O. Dodonova; Kazuhiro R. Nitta; Ekaterina Morgunova; Minna Taipale; Patrick Cramer; Jussi Taipale


Journal of Biological Chemistry | 2018

Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by alpha-amanitin

X Liu; Lucas Farnung; Christoph Wigge; Patrick Cramer

Collaboration


Dive into the Lucas Farnung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge