Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Cramer is active.

Publication


Featured researches published by Patrick Cramer.


The EMBO Journal | 2010

Architecture of the RNA polymerase II–TFIIF complex revealed by cross‐linking and mass spectrometry

Zhuo Angel Chen; Anass Jawhari; Lutz Fischer; Claudia Buchen; Salman Tahir; Tomislav Kamenski; Morten Rasmussen; Laurent Larivière; Jimi-Carlo Bukowski-Wills; Michael Nilges; Patrick Cramer; Juri Rappsilber

Higher‐order multi‐protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X‐ray structure determination. Here, we show that protein cross‐linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15‐subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N‐terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C‐terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non‐specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross‐linking/MS as an integrated structure analysis tool for large multi‐protein complexes.


Nature Structural & Molecular Biology | 2010

Uniform transitions of the general RNA polymerase II transcription complex

Andreas Mayer; Michael Lidschreiber; Matthias Siebert; Kristin Leike; Johannes Söding; Patrick Cramer

We present genome-wide occupancy profiles for RNA polymerase (Pol) II, its phosphorylated forms and transcription factors in proliferating yeast. Pol II exchanges initiation factors for elongation factors during a 5′ transition that is completed 150 nucleotides downstream of the transcription start site (TSS). The resulting elongation complex is composed of all the elongation factors and shows high levels of Ser7 and Ser5 phosphorylation on the C-terminal repeat domain (CTD) of Pol II. Ser2 phosphorylation levels increase until 600–1,000 nucleotides downstream of the TSS and do not correlate with recruitment of Spt6 and Pcf11, which bind the Ser2-phosphorylated CTD in vitro. This indicates CTD-independent recruitment mechanisms and CTD masking in vivo. Elongation complexes are productive and disassemble in a two-step 3′ transition. Paf1, Spt16 (part of the FACT complex), and the CTD kinases Bur1 and Ctk1 exit upstream of the polyadenylation site, whereas Spt4, Spt5, Spt6, Spn1 (also called Iws1) and Elf1 exit downstream. Transitions are uniform and independent of gene length, type and expression.


Cell | 2003

Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage

Hubert Kettenberger; Karim-Jean Armache; Patrick Cramer

The transcription elongation factor TFIIS induces mRNA cleavage by enhancing the intrinsic nuclease activity of RNA polymerase (Pol) II. We have diffused TFIIS into Pol II crystals and derived a model of the Pol II-TFIIS complex from X-ray diffraction data to 3.8 A resolution. TFIIS extends from the polymerase surface via a pore to the internal active site, spanning a distance of 100 A. Two essential and invariant acidic residues in a TFIIS loop complement the Pol II active site and could position a metal ion and a water molecule for hydrolytic RNA cleavage. TFIIS also induces extensive structural changes in Pol II that would realign nucleic acids in the active center. Our results support the idea that Pol II contains a single tunable active site for RNA polymerization and cleavage, in contrast to DNA polymerases with two separate active sites for DNA polymerization and cleavage.


Nature | 2004

Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors

Anton Meinhart; Patrick Cramer

During transcription, RNA polymerase (Pol) II synthesizes eukaryotic messenger RNA. Transcription is coupled to RNA processing by the carboxy-terminal domain (CTD) of Pol II, which consists of up to 52 repeats of the sequence Tyr 1-Ser 2-Pro 3-Thr 4-Ser 5-Pro 6-Ser 7 (refs 1, 2). After phosphorylation, the CTD binds tightly to a conserved CTD-interacting domain (CID) present in the proteins Pcf11 and Nrd1, which are essential and evolutionarily conserved factors for polyadenylation-dependent and -independent 3′-RNA processing, respectively. Here we describe the structure of a Ser 2-phosphorylated CTD peptide bound to the CID domain of Pcf11. The CTD motif Ser 2-Pro 3-Thr 4-Ser 5 forms a β-turn that binds to a conserved groove in the CID domain. The Ser 2 phosphate group does not make direct contact with the CID domain, but may be recognized indirectly because it stabilizes the β-turn with an additional hydrogen bond. Iteration of the peptide structure results in a compact β-spiral model of the CTD. The model suggests that, during the mRNA transcription-processing cycle, compact spiral regions in the CTD are unravelled and regenerated in a phosphorylation-dependent manner.


Molecular Systems Biology | 2014

Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast

Christian Miller; Björn Schwalb; Kerstin C. Maier; Daniel Schulz; Sebastian Dümcke; Benedikt Zacher; Andreas Mayer; Jasmin F. Sydow; Lisa Marcinowski; Lars Dölken; Dietmar E. Martin; Achim Tresch; Patrick Cramer

To obtain rates of mRNA synthesis and decay in yeast, we established dynamic transcriptome analysis (DTA). DTA combines non‐perturbing metabolic RNA labeling with dynamic kinetic modeling. DTA reveals that most mRNA synthesis rates are around several transcripts per cell and cell cycle, and most mRNA half‐lives range around a median of 11 min. DTA can monitor the cellular response to osmotic stress with higher sensitivity and temporal resolution than standard transcriptomics. In contrast to monotonically increasing total mRNA levels, DTA reveals three phases of the stress response. During the initial shock phase, mRNA synthesis and decay rates decrease globally, resulting in mRNA storage. During the subsequent induction phase, both rates increase for a subset of genes, resulting in production and rapid removal of stress‐responsive mRNAs. During the recovery phase, decay rates are largely restored, whereas synthesis rates remain altered, apparently enabling growth at high salt concentration. Stress‐induced changes in mRNA synthesis rates are predicted from gene occupancy with RNA polymerase II. DTA‐derived mRNA synthesis rates identified 16 stress‐specific pairs/triples of cooperative transcription factors, of which seven were known. Thus, DTA realistically monitors the dynamics in mRNA metabolism that underlie gene regulatory systems.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution

David A. Bushnell; Patrick Cramer; Roger D. Kornberg

The structure of RNA polymerase II in a complex with the inhibitor α-amanitin has been determined by x-ray crystallography. The structure of the complex indicates the likely basis of inhibition and gives unexpected insight into the transcription mechanism.


Nature | 2009

RNA polymerase II–TFIIB structure and mechanism of transcription initiation

Dirk Kostrewa; Mirijam E. Zeller; Karim-Jean Armache; Martin Seizl; Kristin Leike; Michael Thomm; Patrick Cramer

To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II–B complex at 4.3 Å resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the ‘B-core’ domain that binds the wall at the end of the cleft. DNA is then opened with the help of the ‘B-linker’ that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the ‘B-reader’ that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Architecture of initiation-competent 12-subunit RNA polymerase II

Karim-Jean Armache; Hubert Kettenberger; Patrick Cramer

RNA polymerase (Pol) II consists of a 10-polypeptide catalytic core and the two-subunit Rpb4/7 complex that is required for transcription initiation. Previous structures of the Pol II core revealed a “clamp,” which binds the DNA template strand via three “switch regions,” and a flexible “linker” to the C-terminal repeat domain (CTD). Here we derived a model of the complete Pol II by fitting structures of the core and Rpb4/7 to a 4.2-Å crystallographic electron density map. Rpb4/7 protrudes from the polymerase “upstream face,” on which initiation factors assemble for promoter DNA loading. Rpb7 forms a wedge between the clamp and the linker, restricting the clamp to a closed position. The wedge allosterically prevents entry of the promoter DNA duplex into the active center cleft and induces in two switch regions a conformation poised for template-strand binding. Interaction of Rpb4/7 with the linker explains Rpb4-mediated recruitment of the CTD phosphatase to the CTD during Pol II recycling. The core–Rpb7 interaction and some functions of Rpb4/7 are apparently conserved in all eukaryotic and archaeal RNA polymerases but not in the bacterial enzyme.


Annual review of biophysics | 2008

Structure of Eukaryotic RNA Polymerases

Patrick Cramer; Karim J. Armache; Sonja Baumli; Stefan Benkert; Florian Brueckner; Claudia Buchen; Gerke E. Damsma; Stefan Dengl; Sebastian R. Geiger; Anja J. Jasiak; Anass Jawhari; Stefan Jennebach; Tomislav Kamenski; Hubert Kettenberger; Claus-D. Kuhn; Elisabeth Lehmann; Kristin Leike; Jasmin F. Sydow; Alessandro Vannini

The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.


Molecular Cell | 2012

Conservation between the RNA Polymerase I, II, and III Transcription Initiation Machineries

Alessandro Vannini; Patrick Cramer

Recent studies of the three eukaryotic transcription machineries revealed that all initiation complexes share a conserved core. This core consists of the RNA polymerase (I, II, or III), the TATA box-binding protein (TBP), and transcription factors TFIIB, TFIIE, and TFIIF (for Pol II) or proteins structurally and functionally related to parts of these factors (for Pol I and Pol III). The conserved core initiation complex stabilizes the open DNA promoter complex and directs initial RNA synthesis. The periphery of the core initiation complex is decorated by additional polymerase-specific factors that account for functional differences in promoter recognition and opening, and gene class-specific regulation. This review outlines the similarities and differences between these important molecular machines.

Collaboration


Dive into the Patrick Cramer's collaboration.

Top Co-Authors

Avatar

Laurent Larivière

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar

Alan C. M. Cheung

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Seizl

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Sainsbury

Center for Integrated Protein Science Munich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge