Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Di Marcotullio is active.

Publication


Featured researches published by Lucia Di Marcotullio.


The EMBO Journal | 2008

Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells

Elisabetta Ferretti; Enrico De Smaele; Evelina Miele; Pietro Laneve; Agnese Po; Marianna Pelloni; Arianna Paganelli; Lucia Di Marcotullio; Elisa Caffarelli; Isabella Screpanti; Irene Bozzoni; Alberto Gulino

MicroRNAs (miRNA) are crucial post‐transcriptional regulators of gene expression and control cell differentiation and proliferation. However, little is known about their targeting of specific developmental pathways. Hedgehog (Hh) signalling controls cerebellar granule cell progenitor development and a subversion of this pathway leads to neoplastic transformation into medulloblastoma (MB). Using a miRNA high‐throughput profile screening, we identify here a downregulated miRNA signature in human MBs with high Hh signalling. Specifically, we identify miR‐125b and miR‐326 as suppressors of the pathway activator Smoothened together with miR‐324‐5p, which also targets the downstream transcription factor Gli1. Downregulation of these miRNAs allows high levels of Hh‐dependent gene expression leading to tumour cell proliferation. Interestingly, the downregulation of miR‐324‐5p is genetically determined by MB‐associated deletion of chromosome 17p. We also report that whereas miRNA expression is downregulated in cerebellar neuronal progenitors, it increases alongside differentiation, thereby allowing cell maturation and growth inhibition. These findings identify a novel regulatory circuitry of the Hh signalling and suggest that misregulation of specific miRNAs, leading to its aberrant activation, sustain cancer development.


International Journal of Cancer | 2009

MicroRNA profiling in human medulloblastoma

Elisabetta Ferretti; Enrico De Smaele; Agnese Po; Lucia Di Marcotullio; Emanuele Tosi; Maria Salomè B. Espinola; Concezio Di Rocco; Riccardo Riccardi; Felice Giangaspero; Alessio Farcomeni; Italo Nofroni; Pietro Laneve; Ubaldo Gioia; Elisa Caffarelli; Irene Bozzoni; Isabella Screpanti; Alberto Gulino

Medulloblastoma is an aggressive brain malignancy with high incidence in childhood. Current treatment approaches have limited efficacy and severe side effects. Therefore, new risk‐adapted therapeutic strategies based on molecular classification are required. MicroRNA expression analysis has emerged as a powerful tool to identify candidate molecules playing an important role in a large number of malignancies. However, no data are yet available on human primary medulloblastomas. A high throughput microRNA expression profiles was performed in human primary medulloblastoma specimens to investigate microRNA involvement in medulloblastoma carcinogenesis. We identified specific microRNA expression patterns which distinguish medulloblastoma differing in histotypes (anaplastic, classic and desmoplastic), in molecular features (ErbB2 or c‐Myc overexpressing tumors) and in disease‐risk stratification. MicroRNAs expression profile clearly differentiates medulloblastoma from either adult or fetal normal cerebellar tissues. Only a few microRNAs displayed upregulated expression, while most of them were downregulated in tumor samples, suggesting a tumor growth‐inhibitory function. This property has been addressed for miR‐9 and miR‐125a, whose rescued expression promoted medulloblastoma cell growth arrest and apoptosis while targeting the proproliferative truncated TrkC isoform. In conclusion, misregulated microRNA expression profiles characterize human medulloblastomas, and may provide potential targets for novel therapeutic strategies.


Nature Cell Biology | 2006

Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination

Lucia Di Marcotullio; Elisabetta Ferretti; Azzura Greco; Enrico De Smaele; Agnese Po; Maria Anna Sico; Maurizio Alimandi; Giuseppe Giannini; Marella Maroder; Isabella Screpanti; Alberto Gulino

The developmental protein Numb is a major determinant of binary cell fates. It is also required for the differentiation of cerebellar granule cell progenitors (GCPs) at a stage of development responsive to the morphogenic glycoprotein Hedehog. Hedgehog signalling is crucial for the physiological maintenance and self-renewal of neural stem cells and its deregulation is responsible for their progression towards tumorigenesis. The mechanisms that inhibit this pathway during the differentiation stage are poorly understood. Here, we identify Numb as a Hedgehog-pathway inhibitor that is downregulated in early GCPs and GCP-derived cancer cells. We demonstrate that the Hedgehog transcription factor Gli1 is targeted by Numb for Itch-dependent ubiquitination, which suppresses Hedgehog signals, thus arresting growth and promoting cell differentiation. This novel Numb-dependent regulatory loop may limit the extent and duration of Hedgehog signalling during neural-progenitor differentiation, and its subversion may be a relevant event in brain tumorigenesis.


Nature Cell Biology | 2010

Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation.

Gianluca Canettieri; Lucia Di Marcotullio; Azzura Greco; Sonia Coni; Laura Antonucci; Paola Infante; Laura Pietrosanti; Enrico De Smaele; Elisabetta Ferretti; Evelina Miele; Marianna Pelloni; Giuseppina De Simone; Emilia Pedone; Paola Gallinari; Alessandra Giorgi; Christian Steinkühler; Luigi Vitagliano; Carlo Pedone; M. Eugenià Schinin; Isabella Screpanti; Alberto Gulino

Hedgehog signalling is crucial for development and is deregulated in several tumours, including medulloblastoma. Regulation of the transcriptional activity of Gli (glioma-associated oncogene) proteins, effectors of the Hedgehog pathway, is poorly understood. We show here that Gli1 and Gli2 are acetylated proteins and that their HDAC-mediated deacetylation promotes transcriptional activation and sustains a positive autoregulatory loop through Hedgehog-induced upregulation of HDAC1. This mechanism is turned off by HDAC1 degradation through an E3 ubiquitin ligase complex formed by Cullin3 and REN, a Gli antagonist lost in human medulloblastoma. Whereas high HDAC1 and low REN expression in neural progenitors and medulloblastomas correlates with active Hedgehog signalling, loss of HDAC activity suppresses Hedgehog-dependent growth of neural progenitors and tumour cells. Consistent with this, abrogation of Gli1 acetylation enhances cellular proliferation and transformation. These data identify an integrated HDAC- and ubiquitin-mediated circuitry, where acetylation of Gli proteins functions as an unexpected key transcriptional checkpoint of Hedgehog signalling.


The EMBO Journal | 2010

Hedgehog controls neural stem cells through p53-independent regulation of Nanog

Agnese Po; Elisabetta Ferretti; Evelina Miele; Enrico De Smaele; Arianna Paganelli; Gianluca Canettieri; Sonia Coni; Lucia Di Marcotullio; Mauro Biffoni; Luca Massimi; Concezio Di Rocco; Isabella Screpanti; Alberto Gulino

Hedgehog (Hh) pathway has a pivotal function in development and tumorigenesis, processes sustained by stem cells (SCs). The transcription factor Nanog controls stemness acting as a key determinant of both embryonic SC self‐renewal and differentiated somatic cells reprogramming to pluripotency, in concert with the loss of the oncosuppressor p53. How Nanog is regulated by microenvironmental signals in postnatal SC niches has been poorly investigated. Here, we show that Nanog is highly expressed in SCs from postnatal cerebellum and medulloblastoma, and acts as a critical mediator of Hh‐driven self‐renewal. Indeed, the downstream effectors of Hh activity, Gli1 and Gli2, bind to Nanog‐specific cis‐regulatory sequences both in mouse and human SCs. Loss of p53, a key event promoting cell stemness, activates Hh signalling, thereby contributing to Nanog upregulation. Conversely, Hh downregulates p53 but does not require p53 to control Nanog. Our data reveal a mechanism for the function of Hh in the control of stemness that represents a crucial component of an integrated circuitry determining cell fate decision and involved in the maintenance of cancer SCs.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells

Pietro Laneve; Lucia Di Marcotullio; Ubaldo Gioia; Micol E. Fiori; Elisabetta Ferretti; Alberto Gulino; Irene Bozzoni; Elisa Caffarelli

MicroRNAs (miRNAs) are tiny noncoding RNAs whose function as modulators of gene expression is crucial for the proper control of cell growth and differentiation. Although the profile of miRNA expression has been defined for many different cellular systems, the elucidation of the regulatory networks in which they are involved is only just emerging. In this work, we identify a crucial role for three neuronal miRNAs (9, 125a, and 125b) in controlling human neuroblastoma cell proliferation. We show that these molecules act in an additive manner by repressing a common target, the truncated isoform of the neurotrophin receptor tropomyosin-related kinase C, and we demonstrate that the down-regulation of this isoform is critical for regulating neuroblastoma cell growth. Consistently with their function, these miRNAs were found to be down-modulated in primary neuroblastoma tumors.


Experimental Cell Research | 2010

The multiple functions of Numb

Alberto Gulino; Lucia Di Marcotullio; Isabella Screpanti

Numb is an evolutionary conserved protein that plays critical roles in cell fate determination. Mammalian Numb displays a higher degree of structural complexity compared to the Drosophila homolog based on the number of encoding genes (Numb and Numb-like) and of alternative spliced isoforms. Accordingly, Numb proteins display a complex pattern of functions such as the control of asymmetric cell division and cell fate choice, endocytosis, cell adhesion, cell migration, ubiquitination of specific substrates and a number of signaling pathways (i.e. Notch, Hedgehog, p53). Recent findings indicate that, besides controlling such physiologic developmental processes, subversion of the above Numb-dependent events plays a critical role in disease (e.g. cancer). We will review here the multiple functions of mNumb and their underlying molecular mechanisms in development and disease.


The Journal of Neuroscience | 2005

Hedgehog Antagonist RENKCTD11 Regulates Proliferation and Apoptosis of Developing Granule Cell Progenitors

Beatrice Argenti; Rita Gallo; Lucia Di Marcotullio; Elisabetta Ferretti; Maddalena Napolitano; Sonia Canterini; Enrico De Smaele; Azzura Greco; Maria Teresa Fiorenza; Marella Maroder; Isabella Screpanti; Edoardo Alesse; Alberto Gulino

During the early development of the cerebellum, a burst of granule cell progenitor (GCP) proliferation occurs in the outer external granule layer (EGL), which is sustained mainly by Purkinje cell-derived Sonic Hedgehog (Shh). Shh response is interrupted once GCPs move into the inner EGL, where granule progenitors withdraw proliferation and start differentiating and migrating toward the internal granule layer (IGL). Failure to interrupt Shh signals results in uncoordinated proliferation and differentiation of GCPs and eventually leads to malignancy (i.e., medulloblastoma). The Shh inhibitory mechanisms that are responsible for GCP growth arrest and differentiation remain unclear. Here we report that REN, a putative tumor suppressor frequently deleted in human medulloblastoma, is expressed to a higher extent in nonproliferating inner EGL and IGL granule cells than in highly proliferating outer EGL cells. Accordingly, upregulated REN expression occurs along GCP differentiation in vitro, and, in turn, REN overexpression promotes growth arrest and increases the proportion of p27/Kip1+ GCPs. REN also impairs both Gli2-dependent gene transcription and Shh-enhanced expression of the target Gli1 mRNA, thus antagonizing the Shh-induced effects on the proliferation and differentiation of cultured GCPs. Conversely, REN functional knock-down impairs Hedgehog antagonism and differentiation and sustains the proliferation of GCPs. Finally, REN enhances caspase-3 activation and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling apoptotic GCP numbers; therefore, the pattern of REN expression, its activity, and its antagonism on the Hedgehog pathway suggest that this gene may represent a restraint of Shh signaling at the outer to inner EGL GCP transitions. Medulloblastoma-associated REN loss of function might withdraw such a limiting signal for immature cell expansion, thus favoring tumorigenesis.


The EMBO Journal | 2015

Gli1/DNA interaction is a druggable target for Hedgehog‐dependent tumors

Paola Infante; Mattia Mori; Romina Alfonsi; Francesca Ghirga; Federica Aiello; Sara Toscano; Cinzia Ingallina; Mariangela Siler; Danilo Cucchi; Agnese Po; Evelina Miele; Davide D'Amico; Gianluca Canettieri; Enrico De Smaele; Elisabetta Ferretti; Isabella Screpanti; Gloria Uccello Barretta; Maurizio Botta; Bruno Botta; Alberto Gulino; Lucia Di Marcotullio

Hedgehog signaling is essential for tissue development and stemness, and its deregulation has been observed in many tumors. Aberrant activation of Hedgehog signaling is the result of genetic mutations of pathway components or other Smo‐dependent or independent mechanisms, all triggering the downstream effector Gli1. For this reason, understanding the poorly elucidated mechanism of Gli1‐mediated transcription allows to identify novel molecules blocking the pathway at a downstream level, representing a critical goal in tumor biology. Here, we clarify the structural requirements of the pathway effector Gli1 for binding to DNA and identify Glabrescione B as the first small molecule binding to Gli1 zinc finger and impairing Gli1 activity by interfering with its interaction with DNA. Remarkably, as a consequence of its robust inhibitory effect on Gli1 activity, Glabrescione B inhibited the growth of Hedgehog‐dependent tumor cells in vitro and in vivo as well as the self‐renewal ability and clonogenicity of tumor‐derived stem cells. The identification of the structural requirements of Gli1/DNA interaction highlights their relevance for pharmacologic interference of Gli signaling.


Molecular Carcinogenesis | 2003

EGF- and cell-cycle-regulated STAG1/PMEPA1/ERG1.2 belongs to a conserved gene family and is overexpressed and amplified in breast and ovarian cancer.

Giuseppe Giannini; Maria Irene Ambrosini; Lucia Di Marcotullio; Fabio Cerignoli; Massimo Zani; Andrew R. Mackay; Isabella Screpanti; Luigi Frati; Alberto Gulino

The abnormal activation of the epidermal growth factor (EGF) pathway is one of the most common findings in human cancer, and a number of molecular devices of laboratory and clinical relevance have been designed to block this transduction pathway. Because of the large number of cellular events that might be regulated through the activation of the four EGF receptor family members, it is possible that screening methodologies for the identification of new molecular targets working downstream of these pathways may provide new tools for cancer diagnosis and potentially prevention and therapy. In searching for EGF target genes, we have identified ERG1.2, the mouse homolog of the solid tumor‐associated gene STAG1. Both in humans and in mice, it belongs to a new gene family that can give origin to several protein isoforms through alternative splicing and/or multiple translation starts. Sequence analysis and experimental data suggest that ERG1.2 is likely to function as a membrane‐bound protein interacting with downstream signaling molecules through WW‐ and SH3‐binding domains. ERG1.2 is a cell‐cycle–regulated gene, and both ERG1.2 and STAG1 are induced by EGF and other growth factors at the transcript and protein levels. Finally, we have demonstrated that, besides prostate cancer and renal cell carcinoma, STAG1 was also overexpressed in breast and ovarian cancer cell lines and in breast primary tumors. Although in most cases STAG1 overexpression is probably due to the abnormal activation of the EGF pathway, we have also demonstrated genetic amplification and rearrangement of its locus in one breast cancer cell line and one primary ovarian cancer, suggesting that STAG1 might be a direct molecular target in the carcinogenetic process. Thus its overexpression might be regarded not only as a tumor marker but also as a potentially pathogenetic event.

Collaboration


Dive into the Lucia Di Marcotullio's collaboration.

Top Co-Authors

Avatar

Alberto Gulino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Isabella Screpanti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Enrico De Smaele

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Infante

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Romina Alfonsi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Sonia Coni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Agnese Po

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Azzura Greco

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge