Luciana R. Brandão
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luciana R. Brandão.
PLOS ONE | 2012
Patricia Valente; Teun Boekhout; Melissa Fontes Landell; Juliana Crestani; Fernando C. Pagnocca; Lara Durães Sette; Michel R. Z. Passarini; Carlos A. Rosa; Luciana R. Brandão; Raphael Sanzio Pimenta; José R. A. Ribeiro; Karina Marques Garcia; Ching Fu Lee; Sung Oui Suh; Gábor Péter; Dénes Dlauchy; Jack W. Fell; Gloria Scorzetti; Bart Theelen; Marilene Henning Vainstein
Background Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species. Methodology/Principal Findings The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts. Conclusions/Significance In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364T = DBVPG 4489T), Bandoniozyma aquatica sp. nov. (UFMG-DH4.20T = CBS 12527T = ATCC MYA-4876T), Bandoniozyma complexa sp. nov. (CBS 11570T = ATCC MYA-4603T = MA28aT), Bandoniozyma fermentans sp. nov. (CBS 12399T = NU7M71T = BCRC 23267T), Bandoniozyma glucofermentans sp. nov. (CBS 10381T = NRRL Y-48076T = ATCC MYA-4760T = BG 02-7-15-015A-1-1T), Bandoniozyma tunnelae sp. nov. (CBS 8024T = DBVPG 7000T), and Bandoniozyma visegradensis sp. nov. (CBS 12505T = NRRL Y-48783T = NCAIM Y.01952T).
FEMS Microbiology Ecology | 2011
Luciana R. Brandão; Diego Libkind; Aline B.M. Vaz; Lília C. Espírito Santo; Martín Moliné; Virginia de Garcia; María van Broock; Carlos A. Rosa
Nahuel Huapi (NH) Lake is an oligotrophic temperate lake of glacial origin with high transparency, surrounded by well-developed forests and located at San Carlos de Bariloche, Nahuel Huapi National Park, in Patagonia, Argentina. In this lake, we characterized yeast distribution and diversity along a south-to-north transect and established a relationship between the ability to produce photoprotective compounds (PPCs) (carotenoid pigments and mycosporines) and the occurrence of yeast at different collection points. Subsurface water samples were filtered for yeast isolation. Total yeast counts ranged between 22 and 141 CFU L(-1) , and the highest values corresponded to the most impacted sites. Littoral sites had a low proportion of yeast-producing PPCs and this group prevailed in pelagic sites. This is probably a result of the high transparency of the water and the increased UV exposure. The yeast community from NH Lake showed a high species richness and a uniform distribution of taxa between pelagic and border collection points. Yeasts were identified as belonging to 14 genera and 34 species. Rhodotorula mucilaginosa and Cryptococcus victoriae were the most frequently found species, representing 14.4% and 13.6% of the total yeast isolates, respectively. Most of the yeast isolates demonstrated at least one extracellular enzymatic activity (mainly cellulase and lipase activities), which suggested that these microorganisms are metabolically active in the lake.
Brazilian Journal of Microbiology | 2011
Aline B.M. Vaz; Luiz H. Rosa; Mariana de Lourdes Almeida Vieira; Virginia de Garcia; Luciana R. Brandão; Lia Cardoso Rocha Saraiva Teixeira; Martín Moliné; Diego Libkind; María van Broock; Carlos A. Rosa
The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island) and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano) soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia), Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4°C and 20°C, indicating that they could be metabolically active in the sampled substrates.
International Journal of Systematic and Evolutionary Microbiology | 2014
Melissa Fontes Landell; Luciana R. Brandão; Anne C. Barbosa; Jesus Pais Ramos; Silvana V. B. Safar; Fátima de Cássia Oliveira Gomes; Francisca M. P. Sousa; Paula B. Morais; Leonardo Broetto; Orilio Leoncini; José R. A. Ribeiro; Bundit Fungsin; Masako Takashima; Takashi Nakase; Ching-Fu Lee; Marilene Henning Vainstein; Jack W. Fell; Gloria Scorzetti; Helen S. Vishniac; Carlos A. Rosa; Patricia Valente
Several independent surveys of yeasts associated with different plant materials and soil led to the proposal of a novel yeast species belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences of the D1/D2 domains and internal transcribed spacer region of the large subunit of the rRNA gene suggested affinity to a phylogenetic lineage that includes Hannaella coprosmaensis, Hannaella oryzae and Hannaella sinensis. Thirty-two isolates were obtained from different sources, including bromeliads, nectar of Heliconia psittacorum (Heliconiaceae), flowers of Pimenta dioica (Myrtaceae), roots and leaves of sugar cane (Saccharum spp.) in Brazil, leaves of Cratoxylum maingayi, Arundinaria pusilla and Vitis vinifera in Thailand, soil samples in Taiwan, and prairie soil in the USA. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from Hannaella coprosmaensis and Hannaella oryzae by 36 and 46 nt substitutions, respectively. A novel species is suggested to accommodate these isolates, for which the name Hannaella pagnoccae sp. nov. is proposed. The type strain is BI118(T) ( = CBS 11142(T) = ATCC MYA-4530(T)).
Journal of Basic Microbiology | 2013
Jaqueline Rabelo de Lima; Luciana Rocha Barros Gonçalves; Luciana R. Brandão; Carlos A. Rosa; F. M. P. Viana
A total of 580 yeasts strains, isolated from Ceara State of Brasil, were evaluated for their ability to produce killer toxin. Of these strains, 29 tested positive for the killer phenotype and were further evaluated for their ability to control Colletotrichum gloeosporioides germination in vitro. All yeast strains that expressed the killer phenotype were characterized by sequencing the D1/D2 regions of the large subunit of the rRNA gene. Five yeast strains provided a significant reduction in mycelial growth and conidial germination of C. gloeosporioides in vitro, especially Meyerozyma guilliermondii, which was able to reduce the fungal mycelial growth on solid medium (potato dextrose agar (PDA)) by 60% and block 100% of conidia germination in liquid media (potato dextrose broth (PDB)). Filtering and autoclaving the liquid cultures had no effect on the growth of the pathogen. These results indicate the potential use of antagonist yeasts isolated from tropical fruits in the control of anthracnose caused by C. gloeosporioides in papaya. Further elucidation of main mechanisms involved on anthracnose control by these yeasts could be helpful for the development of biocontrol techniques related to the management of this disease in tropical fruits.
Research in Veterinary Science | 2012
Yaneisy García-Hernández; Zoraya Rodríguez; Luciana R. Brandão; Carlos A. Rosa; Jacques Robert Nicoli; Arabel Elías Iglesias; Tania Pérez-Sánchez; Ramón Boucourt Salabarría; Nabil Halaihel
UNLABELLED The objective of this study was to isolate and identify yeast strains from broilers excreta and to evaluate in vitro their potential for probiotic use in animal production. METHODS AND RESULTS Nine yeast strains were isolated and presumptively pre-identified by biochemical assays. These isolates were grouped in six different molecular profiles using PCR-fingerprinting technique. Each profile was identified by sequencing of the D1/D2 domains of the large subunit of the 26S rRNA gene. These yeasts were identified as: Trichosporon sp. (LV-2), Wickerhamomyces anomalus (LV-6), Pichia kudriavzevii (LV-8), Kodamaea ohmeri (LV-9) and Trichosporon asahii (LV-10). A pre-screening of the strains for probiotic use was based on their ability to agglutinate pathogenic micro-organisms. These yeast strains were characterized for specific growth rate, duplication time, their cell surface hydrophobicity, medium acidification, resistance to low pH (2.0, 2.5 and 3.0) and concentrations of bile salts (0.3% and 0.6%). The isolate of W. anomalus (LV-6) had the highest agglutinating and adherence capacity, a growth rate of 2.07×10(8) cfu/mL in 24 h at 30 °C, decreasing the medium pH from 6.5 to 5.23, a 25% hydrophobicity and an elevated capacity to grow under stress conditions. CONCLUSIONS W. anomalus strain LV-6 showed the best characteristics for use as a probiotic candidate. SIGNIFICANCE AND IMPACT OF THE STUDY The data from this study helped in choosing a probiotic candidate from yeast to use in broiler production.
Journal of Water and Health | 2010
Luciana R. Brandão; Adriana O. Medeiros; Mariana C. Duarte; Anne C. Barbosa; Carlos A. Rosa
The diversity and antifungal resistance of yeasts able to grow at 37 degrees C and the occurrence of bacterial indicators of water quality were studied in three lakes in Southeastern Brazil. The densities of yeasts, Escherichia coli, Enterococcus spp. and Pseudomonas aeruginosa were determined by the multiple-tube fermentation technique, and counts of heterotrophic bacteria were determined using the pour plate method. The yeasts were identified using physiological and molecular techniques and their resistance to amphotericin B, itraconazole and fluconazole was tested. Yeast occurrence was significantly correlated only with the density of fecal coliforms. Candida krusei, C. guilliermondii and C. tropicalis, the most frequently isolated yeast species, are associated with fecal contamination of water by warm-blooded animals. Yeast isolates were most resistant to amphotericin B (21.7%), followed by itraconazole (20%) and then fluconazole (2.8%). In addition to tests for the fecal coliform group, the density of yeasts grown at 37 degrees C could be used as a complementary microbial indicator that aquatic environments contain organic matter of human origin. The incidence of yeast species resistant to three antifungal drugs shows that these microorganisms could pose a health risk to the people who use these lakes for recreation.
International Journal of Systematic and Evolutionary Microbiology | 2015
Melissa Fontes Landell; Luciana R. Brandão; Silvana V. B. Safar; Fátima de Cássia Oliveira Gomes; Ciro R. Félix; Ana Raquel O. Santos; Danielle M. Pagani; Jesus Pais Ramos; Leonardo Broetto; Tamí Mott; Marilene Henning Vainstein; Patricia Valente; Carlos A. Rosa
Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).
International Journal of Systematic and Evolutionary Microbiology | 2013
Allen N. Hagler; José R. A. Ribeiro; T. Pinotti; Luciana R. Brandão; Raphael Sanzio Pimenta; Ulysses Lins; Ching-Fu Lee; Chin-Wen Hsieh; Marc-André Lachance; Carlos A. Rosa
Two novel yeast species were isolated during three independent studies of yeasts associated with natural substrates in Brazil and Taiwan. Analysis of the sequences of the D1/D2 domains of the large subunit rRNA gene showed that these novel species belong to the Wickerhamiella clade. The first was isolated from freshwater and a leaf of sugar cane (Saccharum officinarum) in Brazil and from leaves of Wedelia biflora in Taiwan. Described here as Wickerhamiella slavikovae sp. nov., it differs by 56 nucleotide substitutions and 19 gaps in the D1/D2 region of the large subunit rRNA gene from Candida sorbophila, the least divergent species. The second species, named Wickerhamiella goesii sp. nov., was isolated from leaves and the rhizosphere of sugar cane collected in Rio de Janeiro, Brazil. The species differs by 54 nucleotide substitutions and nine gaps in the D1/D2 domains from Candida drosophilae, its least divergent relative. The type strains are Wickerhamiella slavikovae sp. nov. IMUFRJ 52096(T) (= CBS 12417(T) = DBVPG 8032(T)) and Wickerhamiella goesii sp. nov. IMUFRJ 52102(T) (= CBS 12419(T) = DBVPG 8034(T)).
International Journal of Systematic and Evolutionary Microbiology | 2016
Machado Pagani D; Luciana R. Brandão; Santos Ar; Ciro R. Félix; Pais Ramos J; Leonardo Broetto; Gloria Scorzetti; Jack W. Fell; Augusto Rosa C; Patricia Valente; Fontes Landell M
Two yeast species, Papiliotrema leoncinii sp. nov. and Papiliotrema miconiae sp. nov., in the family Rhynchogastremataceae of the Tremellales are proposed. The two species are related to six species of the genus Papiliotrema: Papiliotrema aureus, P. flavescens, P. terrestris, P. baii, P. ruineniae and P. wisconsinensis. The novel species are proposed on the basis of the sequence-based phylogenetic species concept with analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region. A total of 16 strains of Papiliotrema leoncinii sp. nov. were obtained from freshwater and bromeliad leaves collected in Brazil. Papiliotrema leoncinii sp. nov. differs by 11, 12, 16, 14, 11 and 13 substitutions in the D1/D2 domain from the related species P. aureus, P. flavescens, P. terrestris, P. baii, P. ruineniae and P. wisconsinensis, respectively. Differences of 11 substitutions and 21 or more substitutions in ITS regions were found when the sequences of Papiliotrema leoncinii sp. nov. were compared with P. wisconsinensis and its closest relatives. The type strain of Papiliotrema leoncinii sp. nov. is UFMG-CM-Y374T (=CBS 13918T). Papiliotrema miconiae sp. nov. is represented by two strains isolated from a flower of Miconia sp. and a water sample in Brazil. Papiliotrema miconiae sp. nov. differs from the related species P. aureus and P. ruineniae by eight substitutions, from P. flavescens and P. terrestris by 11 substitutions, from P. baii by 10 substitutions and from P. wisconsinensis by 6 substitutions in the D1/D2 domain, and by 7 substitutions from P. wisconsinensis and more than 19 substitutions in the ITS region from its closest relatives. The type strain of Papiliotrema miconiae sp. nov. is CBS 8358T (ML 3666T=DBVPG-4492T). The MycoBank numbers for Papiliotrema leoncinii sp. nov. and Papiliotrema miconiae sp. nov. are MB 813594 and MB 814882, respectively.