Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luciano Mueller is active.

Publication


Featured researches published by Luciano Mueller.


Nature Structural & Molecular Biology | 1998

Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions

Mark R. Hansen; Luciano Mueller; Arthur Pardi

Dipolar coupling interactions represent an extremely valuable source of long-range distance and angle information that was previously not available for solution structure determinations of macromolecules. This is because observation of these dipolar coupling data requires creating an anisotropic environment for the macromolecule. Here we introduce a new method for generating tunable degrees of alignment of macromolecules by addition of magnetically aligned Pf1 filamentous bacteriophage as a cosolute. This phage-induced alignment technique has been used to study 1H-1H, 1H-13C, and 1H-15N dipolar coupling interactions in a DNA duplex, an RNA hairpin and several proteins including thioredoxin and apo-calmodulin. The phage allow alignment of macromolecules over a wide range of temperature and solution conditions and thus represent a stable versatile method for generating partially aligned macromolecules in solution.


Cell | 2013

The dynamic process of β2-adrenergic receptor activation

Rie Nygaard; Yaozhong Zou; Ron O. Dror; Thomas J. Mildorf; Daniel H. Arlow; Aashish Manglik; Albert C. Pan; Corey W. Liu; Juan José Fung; Michael P. Bokoch; Foon Sun Thian; Tong Sun Kobilka; David E. Shaw; Luciano Mueller; R. Scott Prosser; Brian K. Kobilka

G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the β(2)-adrenergic receptor (β(2)AR), a prototypical GPCR. We labeled β(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for β(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for β(2)ARs ability to engage multiple signaling and regulatory proteins.


Nature | 2010

Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

Michael P. Bokoch; Yaozhong Zou; Søren Rasmussen; Corey W. Liu; Rie Nygaard; Daniel M. Rosenbaum; Juan José Fung; Hee Jung Choi; Foon Sun Thian; Tong Sun Kobilka; Joseph D. Puglisi; William I. Weis; Leonardo Pardo; R. Scott Prosser; Luciano Mueller; Brian K. Kobilka

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the β2 adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.


Nature Structural & Molecular Biology | 1997

Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28.

William J. Metzler; Jürgen Bajorath; William Fenderson; Shyh Yu Shaw; Keith L. Constantine; Joseph Roy Naemura; Gina Leytze; Robert Peach; Thomas B. Lavoie; Luciano Mueller; Peter S. Linsley

The structure of human CTLA-4 reveals that residues Met 99, Tyr 100 and Tyr 104 of the M99 YPPPY104 motif are adjacent to a patch of charged surface residues on the A‘GFCC’ face of the protein. Mutation of these residues, which are conserved in the CTLA-4/CD28 family, significantly reduces binding to CD80 and/or CD86, implicating this patch as a ligand binding site.


The EMBO Journal | 1992

Interaction of the RNA-binding domain of the hnRNP C proteins with RNA.

Matthias Görlach; Michael Wittekind; R A Beckman; Luciano Mueller; Gideon Dreyfuss

The hnRNP C proteins are among the most abundant and avid pre‐mRNA‐binding proteins and they contain a consensus sequence RNA‐binding domain (RBD) that is found in a large number of RNA‐binding proteins. The interaction of the RBD of the hnRNP C proteins with an RNA oligonucleotide [r(U)8] was monitored by nuclear magnetic resonance (NMR). 15N and 13C/15N‐labelled hnRNP C protein RBD was mixed with r(U)8 and one‐ and two‐dimensional (1D and 2D) NMR spectra were recorded in a titration experiment. NMR studies of the uncomplexed 93 amino acid hnRNP C RBD (Wittekind et al., 1992) have shown that it has a compact folded structure (beta alpha beta beta alpha beta), which is typical for the RBD of this family of proteins and which is comprised of a four‐stranded antiparallel beta‐sheet, two alpha‐helices and relatively unstructured amino‐ and carboxy‐terminal regions. Sequential assignments of the polypeptide main‐chain atoms of the hnRNP C RBD‐r(U)8 complex revealed that these typical structural features are maintained in the complex, but significant perturbations of the chemical shifts of amide group atoms occur in a large number of residues. Most of these residues are in the beta‐sheet region and especially in the terminal regions of the RBD. In contrast; chemical shifts of the residues of the well conserved alpha‐helices, with the exception of Lys30, are not significantly perturbed. These observations localize the candidate residues of the RBD that are involved in the interaction with the RNA.(ABSTRACT TRUNCATED AT 250 WORDS)


Biochemistry | 1993

Characterization of the three-dimensional solution structure of human profilin: proton, carbon-13, and nitrogen-15 NMR assignments and global folding pattern

William J. Metzler; Keith L. Constantine; Mark S. Friedrichs; Aneka Bell; Eileen G. Ernst; Thomas B. Lavoie; Luciano Mueller

Abstract Human profilin is a 15-kDa protein that plays a major role in the signaling pathway leading to cytoskeletal rearrangement. Essentially complete assignment of the 1H, 13C, and 15N resonances of human profilin have been made by analysis of multidimensional, double- and triple-resonance nuclear magnetic resonance (NMR) experiments. The deviation of the 13C alpha and 13C beta chemical shifts from their respective random coil values were analyzed and correlate well with the secondary structure determined from the NMR data. Twenty structures of human profilin were refined in the program X-PLOR using a total of 1186 experimentally derived conformational restraints. The structures converged to a root mean squared distance deviation of 1.5 A for the backbone atoms. The resultant conformational ensemble indicates that human profilin is an alpha/beta protein comprised of a seven-stranded, antiparallel beta-sheet and three helices. The secondary structure elements for human profilin are quite similar to those found in Acanthamoeba profilin I [Archer, S. J., Vinson, V. K., Pollard, T. D., & Torchia, D. A. (1993), Biochemistry 32, 6680-6687], suggesting that the three-dimensional structure of Acanthamoeba profilin I should be analogous to that determined here for human profilin. The structure determination of human profilin has facilitated the sequence alignment of lower eukaryotic and human profilins and provides a framework upon which the various functionalities of profilin can be explored. At least one element of the actin-binding region of human profilin is an alpha-helix. Two mechanisms by which phosphatidylinositol 4,5-bisphosphate can interfere with actin-binding by human profilin are proposed.


Journal of Medicinal Chemistry | 2014

The Discovery of Asunaprevir (BMS-650032), An Orally Efficacious NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection

Paul Michael Scola; Li-Qiang Sun; Alan Xiangdong Wang; Jie Chen; Ny Sin; Brian Lee Venables; Sing-Yuen Sit; Yan Chen; Anthony J. Cocuzza; Donna M. Bilder; Stanley V. D’Andrea; Barbara Zheng; Piyasena Hewawasam; Yong Tu; Jacques Friborg; Paul Falk; Dennis Hernandez; Steven Levine; Chaoqun Chen; Fei Yu; Amy K. Sheaffer; Guangzhi Zhai; Diana Barry; Jay O. Knipe; Yong-Hae Han; Richard Schartman; Maria Donoso; Kathy Mosure; Michael Sinz; Tatyana Zvyaga

The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile, and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).


Biochemistry | 1994

Orientation of peptide fragments from Sos proteins bound to the N-terminal SH3 domain of Grb2 determined by NMR spectroscopy.

Michael Wittekind; Claudio Mapelli; Bennett T. Farmer; Ki-Ling Suen; Valentina Goldfarb; Jonglin Tsao; Thomas B. Lavoie; Mariano Barbacid; Chester A. Meyers; Luciano Mueller

NMR spectroscopy has been used to characterize the protein-protein interactions between the mouse Grb2 (mGrb2) N-terminal SH3 domain complexed with a 15-residue peptide (SPLLPKLPP-KTYKRE) corresponding to residues 1264-1278 of the mouse Sos-2 (mSos-2) protein. Intermolecular interactions between the peptide and 13C-15N-labeled SH3 domain were identified in half-reverse-filtered 2D and 3D NOESY experiments. Assignments for the protons involved in interactions between the peptide and the SH3 domain were confirmed in a series of NOESY experiments using a set of peptides in which different leucine positions were fully deuterated. The peptide ligand-binding site of the mGrb2 N-terminal SH3 domain is defined by the side chains of specific aromatic residues (Tyr7, Phe9, Trp36, Tyr52) that form two hydrophobic subsites contacting the side chains of the peptide Leu4 and Leu7 residues. An adjacent negatively charged subsite on the SH3 surface is likely to interact with the side chain of a basic residue at peptide position 10 that we show to be involved in binding. The peptide-binding site of the SH3 is characterized by large perturbations of amide chemical shifts when the peptide is added to the SH3 domain. The mGrb2 N-terminal SH3 domain structure in the complex is well-defined (backbone RMSD of 0.56 +/- 0.21 calculated over the backbone N, C alpha, and C atoms of residues 1-54). The structure of the peptide in the complex is less well-defined but displays a distinct orientation.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Biomolecular NMR | 1996

Correlation of the guanosine exchangeable and nonexchangeable base protons in 13C-/15N-labeled RNA with an HNC-TOCSY-CH experiment

Jean-Pierre Simorre; Grant R. Zimmermann; Luciano Mueller; Arthur Pardi

SummaryA triple resonance HNC-TOCSY-CH experiment is described for correlating the guanosine imino proton and H8 resonances in 13C-/15N-labeled RNAs. Sequential assignment of the exchangeable imino protons in Watson-Crick base pairs is generally made independently of the assignment of the nonexchangeable base protons. This H(NC)-TOCSY-(C)H experiment makes it possible to unambiguously link the assignment of the guanosine H8 resonances with sequential assignment of the guanosine imino proton resonances. 2D H(NC)-TOCSY-(C)H spectra are presented for two isotopically labeled RNAs, a 30-nucleotide lead-dependent ribozyme known as the leadzyme, and a 48-nucleotide hammerhead ribozyme-RNA substrate complex. The results obtained on these two RNAs demonstrate that this HNC-TOCSY-CH experiment is an important tool for resonance assignment of isotopically labeled RNAs.


Journal of Biomolecular NMR | 1995

Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA.

Jean-Pierre Simorre; Frant R. Zimmermann; Arthur Pardi; Bennett T. FarmerII; Luciano Mueller

SummaryA set of triple resonance experiments is presented, providing through-bond H2N/HN to H6 connectivities in uridines and cytidines in 13C-/15N-labeled RNAs. These connectivities provide an important link between the sequential assignment pathways for the exchangeable and nonexchangeable proton resonances in nucleic acids. Both 2D and pseudo-3D HNCCCH experiments were applied to a 30-nucleotide lead-dependent ribozyme, known as the leadzyme. The HN to H6 connectivities for three uridines in the leadzyme were identified from one 2D H(NCCC)H experiment, and the H2N to H6 connectivities were identified for seven of the eight cytidines from the combination of a 2D H(NCCC)H and a pseudo-3D H(NCC)CH experiment.

Collaboration


Dive into the Luciano Mueller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur Pardi

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge