Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bennett T. Farmer is active.

Publication


Featured researches published by Bennett T. Farmer.


Journal of Biomolecular NMR | 1995

High-level 2H/13C/15N labeling of proteins for NMR studies

Ronald A. Venters; Chih Chin Huang; Bennett T. Farmer; Ronald Trolard; Leonard D. Spicer; Carol A. Fierke

SummaryThe protein human carbonic anhydrase II (HCA II) has been isotopically labeled with 2H, 13C and 15N for high-resolution NMR assignment studies and pulse sequence development. To increase the sensitivity of several key 1H/13C/15N triple-resonance correlation experiments, 2H has been incorporated into HCA II in order to decrease the rates of 13C and 1HN T2 relaxation. NMR quantities of protein with essentially complete aliphatic 2H incorporation have been obtained by growth of E. coli in defined media containing D2O, [1,2-13C2, 99%] sodium acetate, and [15N, 99%] ammonium chloride. Complete aliphatic deuterium enrichment is optimal for 13C and 15N backbone NMR assignment studies, since the 13C and 1HN T2 relaxation times and, therefore, sensitivity are maximized. In addition, complete aliphatic deuteration increases both resolution and sensitivity by eliminating the differential 2H isotopic shift observed for partially deuterated CHnDm moieties.


Biochemistry | 1994

Orientation of peptide fragments from Sos proteins bound to the N-terminal SH3 domain of Grb2 determined by NMR spectroscopy.

Michael Wittekind; Claudio Mapelli; Bennett T. Farmer; Ki-Ling Suen; Valentina Goldfarb; Jonglin Tsao; Thomas B. Lavoie; Mariano Barbacid; Chester A. Meyers; Luciano Mueller

NMR spectroscopy has been used to characterize the protein-protein interactions between the mouse Grb2 (mGrb2) N-terminal SH3 domain complexed with a 15-residue peptide (SPLLPKLPP-KTYKRE) corresponding to residues 1264-1278 of the mouse Sos-2 (mSos-2) protein. Intermolecular interactions between the peptide and 13C-15N-labeled SH3 domain were identified in half-reverse-filtered 2D and 3D NOESY experiments. Assignments for the protons involved in interactions between the peptide and the SH3 domain were confirmed in a series of NOESY experiments using a set of peptides in which different leucine positions were fully deuterated. The peptide ligand-binding site of the mGrb2 N-terminal SH3 domain is defined by the side chains of specific aromatic residues (Tyr7, Phe9, Trp36, Tyr52) that form two hydrophobic subsites contacting the side chains of the peptide Leu4 and Leu7 residues. An adjacent negatively charged subsite on the SH3 surface is likely to interact with the side chain of a basic residue at peptide position 10 that we show to be involved in binding. The peptide-binding site of the SH3 is characterized by large perturbations of amide chemical shifts when the peptide is added to the SH3 domain. The mGrb2 N-terminal SH3 domain structure in the complex is well-defined (backbone RMSD of 0.56 +/- 0.21 calculated over the backbone N, C alpha, and C atoms of residues 1-54). The structure of the peptide in the complex is less well-defined but displays a distinct orientation.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Medicinal Chemistry | 2009

Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.

Kevin Chungeng Qian; Lian Wang; Charles L. Cywin; Bennett T. Farmer; Eugene R. Hickey; Carol Ann Homon; Scott Jakes; Mohammed A. Kashem; George E. Lee; Scott Leonard; Jun Li; Ronald Magboo; Wang Mao; Edward J. Pack; Charlene Peng; Anthony S. Prokopowicz; Morgan Welzel; John P. Wolak; Tina Morwick

A series of inhibitors of Pim-2 kinase identified by high-throughput screening is described. Details of the hit validation and lead generation process and structure-activity relationship (SAR) studies are presented. Disclosure of an unconventional binding mode for 1, as revealed by X-ray crystallography using the highly homologous Pim-1 protein, is also presented, and observed binding features are shown to correlate with the Pim-2 SAR. While highly selective within the kinase family, the series shows similar potency for both Pim-1 and Pim-2, which was expected on the basis of homology, but unusual in light of reports in the literature documenting a bias for Pim-1. A rationale for these observations based on Pim-1 and Pim-2 K(M(ATP)) values is suggested. Some interesting cross reactivity with casein kinase-2 was also identified, and structural features which may contribute to the association are discussed.


Journal of Medicinal Chemistry | 2011

Fragment-based discovery of indole inhibitors of matrix metalloproteinase-13.

Steven John Taylor; Asitha Abeywardane; Shuang Liang; Ingo Muegge; Anil K. Padyana; Zhaoming Xiong; Melissa Hill-Drzewi; Bennett T. Farmer; Xiang Li; Brandon Collins; John Li; Alexander Heim-Riether; John R. Proudfoot; Qiang Zhang; Daniel R. Goldberg; Ljiljana Zuvela-Jelaska; Hani Zaher; Jun Li; Neil A. Farrow

Matrix metalloproteases (MMPs) play an important role in cartilage homeostasis under both normal and inflamed disease states and, thus, have become attractive targets for the treatment of arthritic diseases. Herein, we describe the identification of a potent, selective MMP-13 inhibitor, developed using fragment-based structure-guided lead identification and optimization techniques. Virtual screening methods identified a novel, indole-based MMP-13 inhibitor that bound into the S1 pocket of the protein exhibiting a novel interaction pattern hitherto not observed in MMP-13 inhibitors. X-ray crystallographic structures were used to guide the elaboration of the fragment, ultimately leading to a potent inhibitor that was >100-fold selective over nine other MMP isoforms tested.


Protein Science | 2009

Structural and functional characterization of CFE88: Evidence that a conserved and essential bacterial protein is a methyltransferase

Keith L. Constantine; Stanley R. Krystek; Matthew D. Healy; Michael L. Doyle; Nathan O. Siemers; Jane A. Thanassi; Ning Yan; Dianlin Xie; Valentina Goldfarb; Joseph Yanchunas; Li Tao; Brian A. Dougherty; Bennett T. Farmer

CFE88 is a conserved essential gene product from Streptococcus pneumoniae. This 227‐residue protein has minimal sequence similarity to proteins of known 3Dstructure. Sequence alignment models and computational protein threading studies suggest that CFE88 is a methyltransferase. Characterization of the conformation and function of CFE88 has been performed by using several techniques. Backbone atom and limited side‐chain atom NMR resonance assignments have been obtained. The data indicate that CFE88 has two domains: an N‐terminal domain with 163 residues and a C‐terminal domain with 64 residues. The C‐terminal domain is primarily helical, while the N‐terminal domain has a mixed helical/extended (Rossmann) fold. By aligning the experimentally observed elements of secondary structure, an initial unrefined model of CFE88 has been constructed based on the X‐ray structure of ErmC′ methyltransferase (Protein Data Bank entry 1QAN). NMR and biophysical studies demonstrate binding of S‐adenosyl‐L‐homocysteine (SAH) to CFE88; these interactions have been localized by NMR to the predicted active site in the N‐terminal domain. Mutants that target this predicted active site (H26W, E46R, and E46W) have been constructed and characterized. Overall, our results both indicate that CFE88 is a methyltransferase and further suggest that the methyltransferase activity is essential for bacterial survival.


Science | 1993

Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR

Warren S. Warren; Wolfgang Richter; Ah Andreotti; Bennett T. Farmer


Nature Structural & Molecular Biology | 1996

Localizing the NADP+ binding site on the MurB enzyme by NMR

Bennett T. Farmer; Keith L. Constantine; Valentina Goldfarb; Mark S. Friedrichs; Michael Wittekind; Joseph Yanchunas; James G. Robertson; Luciano Mueller


Journal of the American Chemical Society | 1995

USE OF 1HN-1HN NOES TO DETERMINE PROTEIN GLOBAL FOLDS IN PERDEUTERATED PROTEINS

Ronald A. Venters; William J. Metzler; Leonard D. Spicer; Luciano Mueller; Bennett T. Farmer


Journal of the American Chemical Society | 1996

Incorporation of 1H/13C/15N-{Ile, Leu, Val} into a Perdeuterated, 15N-Labeled Protein: Potential in Structure Determination of Large Proteins by NMR

William J. Metzler; Michael Wittekind; Valentina Goldfarb; Luciano Mueller; Bennett T. Farmer


Journal of the American Chemical Society | 1994

Through-bond correlation of adenine protons in a 13C-labeled ribozyme

Pascale Legault; Bennett T. Farmer; Luciano Mueller; Arthur Pardi

Collaboration


Dive into the Bennett T. Farmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Li

University at Buffalo

View shared research outputs
Researchain Logo
Decentralizing Knowledge