Lucien van Keulen
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucien van Keulen.
BMC Veterinary Research | 2006
Jan Langeveld; J.G. Jacobs; Jo Hf Erkens; Alex Bossers; Fred G. van Zijderveld; Lucien van Keulen
BackgroundDiagnosis based on prion detection in lymph nodes of sheep and goats can improve active surveillance for scrapie and, if it were circulating, for bovine spongiform encephalopathy (BSE). With sizes that allow repetitive testing and a location that is easily accessible at slaughter, retropharyngeal lymph nodes (RLN) are considered suitable organs for testing. Western blotting (WB) of brain homogenates is, in principle, a technique well suited to both detect and discriminate between scrapie and BSE. In this report, WB is developed for rapid diagnosis in RLN and to study biochemical characteristics of PrPres.ResultsOptimal PrPres detection in RLN by WB was achieved by proper tissue processing, antibody choice and inclusion of a step for PrPresconcentration. The analyses were performed on three different sheep sources. Firstly, in a study with preclinical scrapie cases, WB of RLN from infected sheep of VRQ/VRQ genotype – VRQ represents, respectively, polymorphic PrP amino acids 136, 154, and 171 – allowed a diagnosis 14 mo earlier compared to WB of brain stem. Secondly, samples collected from sheep with confirmed scrapie in the course of passive and active surveillance programmes in the period 2002–2003 yielded positive results depending on genotype: all sheep with genotypes ARH/VRQ, VRQ/VRQ, and ARQ/VRQ scored positive for PrPres, but ARQ/ARQ and ARR/VRQ were not all positive. Thirdly, in an experimental BSE study, detection of PrPres in all 11 ARQ/ARQ sheep, including 7 preclinical cases, was possible. In all instances, WB and IHC were almost as sensitive. Moreover, BSE infection could be discriminated from scrapie infection by faster electrophoretic migration of the PrPres bands. Using dual antibody staining with selected monoclonal antibodies like 12B2 and L42, these differences in migration could be employed for an unequivocal differentiation between BSE and scrapie. With respect to glycosylation of PrPres, BSE cases exhibited a greater diglycosylated fraction than scrapie cases. Furthermore, a slight time dependent increase of diglycosylated PrPres was noted between individual sheep, which was remarkable in that it occurred in both scrapie and BSE study.ConclusionThe present data indicate that, used in conjunction with testing in brain, WB of RLN can be a sensitive tool for improving surveillance of scrapie and BSE, allowing early detection of BSE and scrapie and thereby ensuring safer sheep and goat products.
PLOS ONE | 2012
Hendrik-Jan Roest; Betty van Gelderen; Annemieke Dinkla; Dimitrios Frangoulidis; Fred G. van Zijderveld; J.M.J. Rebel; Lucien van Keulen
Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans.
Veterinary Research | 2008
Lucien van Keulen; Alex Bossers; Fred G. van Zijderveld
Many studies have been undertaken in rodents to study the pathogenesis of transmissible spongiform encephalopathies (TSE). Only a few studies have focused on the pathogenesis of bovine spongiform encephalopathy (BSE) and scrapie in their natural hosts. In this review, we summarize the most recent insights into the pathogenesis of BSE and scrapie starting from the initial uptake of TSE agents and crossing of the gut epithelium. Following replication in the gut-associated lymphoid tissues (GALT), TSE agents spread to the enteric nervous system (ENS) of the gut. Infection is then carried through the efferent fibers of the post-ganglionic neurons of the parasympathetic and sympathetic nervous system to the pre-ganglionic neurons in the medulla oblongata of the brain and the thoracic segments of the spinal cord. The differences between the pathogenesis of BSE in cattle and scrapie in sheep are discussed as well as the possible existence of additional pathogenetic routes.
Journal of General Virology | 2002
Christina J. Sigurdson; Carolina Barillas-Mury; Michael W. Miller; Bruno Oesch; Lucien van Keulen; Jan Langeveld; Edward A. Hoover
Up to 15% of free-ranging mule deer in northeastern Colorado and southeastern Wyoming, USA, are afflicted with a prion disease, or transmissible spongiform encephalopathy (TSE), known as chronic wasting disease (CWD). CWD is similar to a subset of TSEs including scrapie and variant Creutzfeldt-Jakob disease in which the abnormal prion protein isoform, PrP(CWD), accumulates in lymphoid tissue. Experimental scrapie studies have indicated that this early lymphoid phase is an important constituent of prion replication interposed between mucosal entry and central nervous system accumulation. To identify the lymphoid target cells associated with PrP(CWD), we used triple-label immunofluorescence and high-resolution confocal microscopy on tonsils from naturally infected deer in advanced disease. We detected PrP(CWD) primarily extracellularly in association with follicular dendritic and B cell membranes as determined by frequent co-localization with antibodies against membrane bound immunoglobulin and CD21. There was minimal co-localization with cytoplasmic labels for follicular dendritic cells (FDC). This finding could indicate FDC capture of PrP(CWD), potentially in association with immunoglobulin or complement, or PrP(C) conversion on FDC. In addition, scattered tingible body macrophages in the germinal centre contained coarse intracytoplasmic aggregates of PrP(CWD), reflecting either phagocytosis of PrP(CWD) on FDC processes, apoptotic FDC or B cells, or actual PrP(CWD) replication within tingible body macrophages. To compare lymphoid cell targets in early and advanced disease, we also examined: (i) PrP(CWD) distribution in lymphoid cells of fawns within 3 months of oral CWD exposure and (ii) tonsil biopsies from preclinical deer with naturally acquired CWD. These studies revealed that the early lymphoid cellular distribution of PrP(CWD) was similar to that in advanced disease, i.e. in a pattern suggesting FDC association. We conclude that in deer, PrP(CWD) accumulates primarily extracellularly and associated with FDCs and possibly B cells - a finding which raises questions as to the cells responsible for pathological prion production.
Veterinary Research | 2011
Christine Hoffmann; Martin Eiden; Martin Kaatz; Markus Keller; Ute Ziegler; Ron Rogers; Bob Hills; Anne Balkema-Buschmann; Lucien van Keulen; J.G. Jacobs; Martin H. Groschup
To establish bovine spongiform encephalopathy (BSE) public health protection measures it is important to precisely define the cattle tissues considered as specified risk materials (SRM). To date, in pre-clinical BSE infected cattle, no evidence of the BSE agent had been found in the gut outside of the ileal Peyers Patches. This study was undertaken to determine when and where the pathological prion protein (PrPSc) and/or BSE infectivity can be found in the small intestine of cattle 4 to 6 months of age, orally challenged with BSE. Samples of the jejunum, the ileum and the ileocaecal junction from 46 BSE infected cattle, culled from 1 up to 44 months post infection (mpi) were examined by immunohistochemistry. Samples from cattle 8 mpi to 20 mpi were additionally studied by PTA Western blot, rapid tests, and by mouse (TgbovXV) bioassay. In doing so nearly all of the cattle, from 4 up to 44 mpi, had detectable amounts of PrPSc and/or infectivity in the distal ileum. In the distal ileum clear time-dependent variations were visible concerning the amount of PrPSc, the tissue structures affected, and the cells involved. BSE infectivity was found not only in the ileum and ileocaecal junction but also in the jejunum. The systematic approach of this study provides new data for qualitative and quantitative risk assessments and allows defining bovine SRM more precisely.
PLOS ONE | 2013
N. Oreshkova; Lucien van Keulen; Jet Kant; R.J.M. Moormann; Jeroen Kortekaas
Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 106.3 TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine.
Veterinary Research | 2011
G. Nodelijk; Herman Jw van Roermund; Lucien van Keulen; B. Engel; Piet Vellema; T.H.J. Hagenaars
Susceptibility to scrapie, a transmissible spongiform encephalopathy in sheep, is modulated by the genetic make-up of the sheep. Scrapie control policies, based on selecting animals of resistant genotype for breeding, have recently been adopted by the Netherlands and other European countries. Here we assess the effectiveness of a breeding programme based on selecting rams of resistant genotype to obtain outbreak control in classical scrapie-affected sheep flocks under field conditions. In six commercially-run flocks following this breeding strategy, we used genotyping to monitor the genotype distribution, and tonsil biopsies and post-mortem analyses to monitor the occurrence of scrapie infection. The farmers were not informed about the monitoring results until the end of the study period of six years. We used a mathematical model of scrapie transmission to analyze the monitoring data and found that where the breeding scheme was consistently applied, outbreak control was obtained after at most four years. Our results also show that classical scrapie control can be obtained before the frequency of non-resistant animals is reduced to zero in the flock. This suggests that control at the national scale can be obtained without a loss of genetic polymorphisms from any of the sheep breeds.
Vaccine | 2015
Paul J. Wichgers Schreur; Jet Kant; Lucien van Keulen; R.J.M. Moormann; Jeroen Kortekaas
Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route.
BMC Veterinary Research | 2010
Alexandre Dobly; Jan Langeveld; Lucien van Keulen; Caroline Rodeghiero; Stéphanie Durand; Riet Geeroms; Patrick Van Muylem; Jessica De Sloovere; E. Vanopdenbosch; Stefan Roels
BackgroundThe bovine spongiform encephalopathy (BSE) epidemic presented homogeneity of the phenotype. This classical BSE (called C-type) was probably due to the contamination of the food chain by a single prion strain. However, due to the active surveillance and better techniques, two rare variants of BSE have been recently reported in different continents without a clear correlation to the BSE epidemic. These emerging types behave as different strains of BSE and were named H-type and L-type according to the high and low molecular mass of the unglycosylated fragment of their proteinase K resistant prion protein (PrPres). In these types, the proportion of the un-, mono- and di-glycosylated fragments of PrP (glycoprofile) is also atypical and represents an effective diagnostic parameter. This study evaluated the presence of such types in bovine of 7 years and older in Belgium.ResultsThe Belgian BSE archive contained 41 bovines of at least 7 years of age. The biochemical features of their PrPres were analyzed by Western blot with five antibodies recognising different regions of PrPres, from N- to C-terminus: 12B2, 9A2, Sha31, SAF84 and 94B4. All antibodies clearly detected PrPres except 12B2 antibody, which is specific for N-terminal region 101-105, a PrP region that is only retained in H-types. The glycoprofiles did correspond to that of C-type (with more than 55% of diglycosylated PrPres using antibody 94B4). Therefore, all cases have the features of C-type BSE.ConclusionsThis study supports that, among the BSE cases of 7 years and older identified in Belgium, none was apparently of the H- or L- type. This is consistent with the very rare occurrence of atypical BSE and the restricted dimension of Belgium. These results shed some light on the worldwide prevalence of atypical BSE.
Neuropathology and Applied Neurobiology | 2015
Lucien van Keulen; Jan Langeveld; Corry H. Dolstra; J.G. Jacobs; Alex Bossers; Fred G. van Zijderveld
TSE strains are routinely identified by their incubation period and vacuolation profile in the brain after intracerebral inoculation and serial passaging in inbred mouse lines. There are some major drawbacks to this method that are related to the variation in vacuolation that exists in the brains of mice infected with the same TSE strain and to variation between observers and laboratories in scoring vacuolation and determining the final incubation period.