Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucinda A. Fulton is active.

Publication


Featured researches published by Lucinda A. Fulton.


The New England Journal of Medicine | 2009

Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome

Elaine R. Mardis; Li Ding; David J. Dooling; David E. Larson; Michael D. McLellan; Ken Chen; Daniel C. Koboldt; Robert S. Fulton; Kim D. Delehaunty; Sean McGrath; Lucinda A. Fulton; Devin P. Locke; Vincent Magrini; Rachel Abbott; Tammi L. Vickery; Jerry S. Reed; Jody S. Robinson; Todd Wylie; Scott M. Smith; Lynn K. Carmichael; James M. Eldred; Christopher C. Harris; Jason Walker; Joshua B. Peck; Feiyu Du; Adam F. Dukes; Gabriel E. Sanderson; Anthony M. Brummett; Eric Clark; Joshua F. McMichael

BACKGROUND The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


PLOS Biology | 2003

The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics

Lincoln Stein; Zhirong Bao; Darin Blasiar; Thomas Blumenthal; Michael R. Brent; Nansheng Chen; Asif T. Chinwalla; Laura Clarke; Chris Clee; Avril Coghlan; Alan Coulson; Peter D'Eustachio; David H. A. Fitch; Lucinda A. Fulton; Robert Fulton; Sam Griffiths-Jones; Todd W. Harris; LaDeana W. Hillier; Ravi S. Kamath; Patricia E. Kuwabara; Elaine R. Mardis; Marco A. Marra; Tracie L. Miner; Patrick Minx; James C. Mullikin; Robert W. Plumb; Jane Rogers; Jacqueline E. Schein; Marc Sohrmann; John Spieth

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Nature | 2009

A burst of segmental duplications in the genome of the African great ape ancestor

Tomas Marques-Bonet; Jeffrey M. Kidd; Mario Ventura; Tina Graves; Ze Cheng; LaDeanna W. Hillier; Zhaoshi Jiang; Carl Baker; Ray Malfavon-Borja; Lucinda A. Fulton; Can Alkan; Gozde Aksay; Santhosh Girirajan; Priscillia Siswara; Lin Chen; Maria Francesca Cardone; Arcadi Navarro; Elaine R. Mardis; Richard Wilson; Evan E. Eichler

It is generally accepted that the extent of phenotypic change between human and great apes is dissonant with the rate of molecular change. Between these two groups, proteins are virtually identical, cytogenetically there are few rearrangements that distinguish ape–human chromosomes, and rates of single-base-pair change and retrotransposon activity have slowed particularly within hominid lineages when compared to rodents or monkeys. Studies of gene family evolution indicate that gene loss and gain are enriched within the primate lineage. Here, we perform a systematic analysis of duplication content of four primate genomes (macaque, orang-utan, chimpanzee and human) in an effort to understand the pattern and rates of genomic duplication during hominid evolution. We find that the ancestral branch leading to human and African great apes shows the most significant increase in duplication activity both in terms of base pairs and in terms of events. This duplication acceleration within the ancestral species is significant when compared to lineage-specific rate estimates even after accounting for copy-number polymorphism and homoplasy. We discover striking examples of recurrent and independent gene-containing duplications within the gorilla and chimpanzee that are absent in the human lineage. Our results suggest that the evolutionary properties of copy-number mutation differ significantly from other forms of genetic mutation and, in contrast to the hominid slowdown of single-base-pair mutations, there has been a genomic burst of duplication activity at this period during human evolution.


Cell (Cambridge) | 2000

The complete sequence of a heterochromatic island from a higher eukaryote

W. R. McCombie; M. de la Bastide; K. Habermann; Laurence D. Parnell; Neilay Dedhia; L. Gnoj; K. Schutz; E. Huang; Lori Spiegel; C. Yordan; M. Sehkon; James Augustus Henry Murray; P. Sheet; Matt Cordes; J. Threideh; T. Stoneking; Joelle Kalicki; Tina Graves; G. Harmon; Jennifer B Edwards; Phil Latreille; Laura Courtney; J. Cloud; A. Abbott; K. Scott; D. Johnson; Patrick Minx; David R. Bentley; B. Fulton; N. Miller

Heterochromatin, constitutively condensed chromosomal material, is widespread among eukaryotes but incompletely characterized at the nucleotide level. We have sequenced and analyzed 2.1 megabases (Mb) of Arabidopsis thaliana chromosome 4 that includes 0.5-0.7 Mb of isolated heterochromatin that resembles the chromosomal knobs described by Barbara McClintock in maize. This isolated region has a low density of expressed genes, low levels of recombination and a low incidence of genetrap insertion. Satellite repeats were absent, but tandem arrays of long repeats and many transposons were found. Methylation of these sequences was dependent on chromatin remodeling. Clustered repeats were associated with condensed chromosomal domains elsewhere. The complete sequence of a heterochromatic island provides an opportunity to study sequence determinants of chromosome condensation.


PLOS Genetics | 2009

Detailed analysis of a contiguous 22-Mb region of the maize genome.

Fusheng Wei; Joshua C. Stein; Chengzhi Liang; Jianwei Zhang; Robert S. Fulton; Regina S. Baucom; Emanuele De Paoli; Shiguo Zhou; Lixing Yang; Yujun Han; Shiran Pasternak; Apurva Narechania; Lifang Zhang; Cheng-Ting Yeh; Kai Ying; Dawn Holligan Nagel; Kristi Collura; David Kudrna; Jennifer Currie; Jinke Lin; Hye Ran Kim; Angelina Angelova; Gabriel Scara; Marina Wissotski; Wolfgang Golser; Laura Courtney; Scott S. Kruchowski; Tina Graves; Susan Rock; Stephanie Adams

Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.


Plant Physiology | 2005

Toward Sequencing the Sorghum Genome: A U.S. National Science Foundation-Sponsored Workshop Report

Stephen Kresovich; B. Barbazuk; J. A. Bedell; A. K. Borrell; C. R. Buell; John J. Burke; Sandra W. Clifton; Marie-Michèle Cordonnier-Pratt; S. Cox; J. A. Dahlberg; J. Erpelding; Theresa Fulton; B. Fulton; Lucinda A. Fulton; Alan R. Gingle; Charles Tom Hash; Y. H. Huang; David Jordan; Patricia E. Klein; Robert R. Klein; J. Magalhaes; Richard McCombie; P. Moore; John E. Mullet; Peggy Ozias-Akins; Andrew H. Paterson; K. Porter; Lee H. Pratt; Bruce A. Roe; William L. Rooney

Members of the worldwide sorghum (Sorghum spp.) community, including private sector and international scientists as well as community representatives from closely related crops such as sugarcane (Saccharum spp.) and maize (Zea mays), met in St. Louis, Missouri, on November 9, 2004, to lay the groundwork for future advances in sorghum genomics and, in particular, to coordinate plans for sequencing of the sorghum genome. Key developments that made this workshop timely included advances in knowledge of the sorghum genome that provide for the development of a genetically anchored physical map to guide sequence assembly and annotation, the growing role of the sorghum genome as a nucleation point for comparative genomics of diverse tropical grasses including many leading crops, and the need for dramatically increased sorghum production to sustain human populations in many regions where its inherent abiotic stress tolerance makes it an essential staple. This report reviews current knowledge of the sorghum genome, a community-endorsed schema for integrating this knowledge into a finished sequence, and early plans for translating the sequence into sustained advances to benefit a worldwide group of stakeholders.


Proceedings of the National Academy of Sciences of the United States of America | 2004

EGF receptor gene mutations are common in lung cancers from

William Pao; Vincent A. Miller; Maureen F. Zakowski; Jennifer Doherty; Katerina Politi; Inderpal S. Sarkaria; Bhuvanesh Singh; Robert T. Heelan; Valerie W. Rusch; Lucinda A. Fulton; Elaine R. Mardis; Doris M. Kupfer; Richard Wilson; Mark G. Kris; Harold E. Varmus


Cell | 2012

The origin and evolution of mutations in acute myeloid leukemia.

John S. Welch; Timothy J. Ley; Daniel C. Link; Christopher A. Miller; David E. Larson; Daniel C. Koboldt; Lukas D. Wartman; Tamara Lamprecht; Fulu Liu; Jun Xia; Cyriac Kandoth; Robert S. Fulton; Michael D. McLellan; David J. Dooling; John W. Wallis; Ken Chen; Christopher C. Harris; Heather K. Schmidt; Joelle Kalicki-Veizer; Charles Lu; Qunyuan Zhang; Ling Lin; Michelle O’Laughlin; Joshua F. McMichael; Kim D. Delehaunty; Lucinda A. Fulton; Vincent Magrini; Sean McGrath; Ryan Demeter; Tammi L. Vickery

Collaboration


Dive into the Lucinda A. Fulton's collaboration.

Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elaine R. Mardis

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick Minx

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tina Graves

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Asif T. Chinwalla

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

LaDeana W. Hillier

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Koboldt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kim D. Delehaunty

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Li Ding

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge