Lucretia A. Sherrod
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lucretia A. Sherrod.
Transactions of the ASABE | 2007
James C. Ascough; Gregory S. McMaster; Allan A. Andales; N. C. Hansen; Lucretia A. Sherrod
Alternative agricultural management systems in the semi-arid Great Plains are receiving increasing attention. GPFARM is a farm/ranch decision support system (DSS) designed to assist in strategic management planning for land units from the field to the whole-farm level. This study evaluated the regional applicability and efficacy of GPFARM based on simulation model performance for dry mass grain yield, total soil profile water content, crop residue, and total soil profile residual NO3-N across a range of dryland no-till experimental sites in eastern Colorado. Field data were collected from 1987 through 1999 from an on-going, long-term experiment at three locations in eastern Colorado along a gradient of low (Sterling), medium (Stratton), and high (Walsh) potential evapotranspiration. Simulated crop alternatives were winter wheat (Triticum aestivum L.), corn (Zea mays L.), sorghum (Sorghum bicolor L.), proso millet (Panicum miliaceum L.), and fallow. Relative error (RE) of simulated mean, root mean square error (RMSE), and index of agreement (d) model evaluation statistics were calculated to compare modeled results to measured data. A one-way, fixed-effect ANOVA was also performed to determine differences among experimental locations. GPFARM simulated versus observed REs ranged from -3% to 35% for crop yield, 6% to 8% for total soil profile water content, -4% to 32% for crop residue, and -7% to -25% for total soil profile residual NO3-N. For trend analysis (magnitudes and location differences), GPFARM simulations generally agreed with observed trends and showed that the model was able to simulate location differences for the majority of model output responses. GPFARM appears to be adequate for use in strategic planning of alternative cropping systems across eastern Colorado dryland locations; however, further improvements in the crop growth and environmental components of the simulation model (including improved parameterization) would improve its applicability for short-term tactical planning scenarios.
Journal of Environmental Quality | 2018
Lucretia A. Sherrod; G. S. McMaster; Jorge A. Delgado; Meagan E. Schipanski; Steven J. Fonte; R. L. Montenieri; K. Larson
No-till and increased cropping intensity (CI) can increase yield and soil organic C (SOC) in the US Great Plains compared with traditional wheat ( L.)-fallow management. However, gains in SOC and other C pools may not be permanent. Increasing frequency of drought may reduce C inputs and potentially reverse gains accrued during wetter periods. This study examined the effect of drought on the persistence of SOC with two objectives: (i) to determine soil C pools (0-20 cm) after 24 yr in no-till as influenced by potential evapotranspiration (PET), landscape position (slope), and CI; and (ii) to compare the size of the C pools after the first 12 yr (wet) versus the subsequent 12 yr, notable for frequent droughts. Rotations were wheat-corn ( L.)-fallow (WCF), continuous cropping (CC), and a grass Conservation Reserve Program mixture planted across slopes at three sites in Colorado with similar precipitation but increasing PET. After 24 yr, water-soluble organic C increased with CI from WCF to CC to grass with 250, 340, and 440 kg C ha, respectively. Soil microbial biomass C also increased with CI-1500, 1660, and 2135 kg C ha for WCF, CC, and grass, respectively. The particulate organic matter C pool had a three-way interaction with PET, slope, and CI. Overall, between Years 12 and 24, SOC increased in grass by 16.9%, with a rate of 425 kg C ha yr sequestration compared with 10.5 and 1.4% for the WCF and CC systems, respectively.
Journal of Environmental Quality | 2017
Andy D. Robertson; Yao Zhang; Lucretia A. Sherrod; Steven T. Rosenzweig; Liwang Ma; Lajpat R. Ahuja; Meagan E. Schipanski
Dryland agroecosystems could be a sizable sink for atmospheric carbon (C) due to their spatial extent and level of degradation, providing climate change mitigation. We examined productivity and soil C dynamics under two climate change scenarios (moderate warming, representative concentration pathway [RCP] 4.5; and high warming, RCP 8.5), using long-term experimental data and the DayCent process-based model for three sites with varying climates and soil conditions in the US High Plains. Each site included a no-till cropping intensity gradient introduced in 1985, with treatments ranging from wheat-fallow ( L.) to continuous annual cropping and perennial grass. Simulations were extended to 2100 using data from 16 global circulation models to estimate uncertainty. Simulated yields declined for all crops (up to 50% for wheat), with small changes after 2050 under RCP 4.5 and continued losses to 2100 under RCP 8.5. Of the cropped systems, continuous cropping had the highest average productivity and soil C sequestration rates (78.1 kg C ha yr from 2015 to 2045 under RCP 4.5). Any increase in soil C for cropped rotations was realized by 2050, but grassland treatments increased soil C (up to 69%) through 2100, even under RCP 8.5. Our simulations indicate that reduced frequency of summer fallow can both increase annualized yields and store more soil C. As evapotranspiration is likely to increase, reducing fallow periods without live vegetation from dryland agricultural rotations may enhance the resilience of these systems to climate change while also increasing soil C storage and mitigating carbon dioxide emissions.
Journal of Visualized Experiments | 2017
Robert H. Erskine; Lucretia A. Sherrod; Timothy R. Green
Spatial patterns of soil erosion and deposition can be inferred from differences in ground elevation mapped at appropriate time increments. Such changes in elevation are related to changes in near-surface soil carbonate (CaCO3) profiles. The objective is to describe a simple conceptual model and detailed protocol for repeatable field and laboratory measurements of these quantities. Here, accurate elevation is measured using a ground-based differential global positioning system (GPS); other data acquisition methods could be applied to the same basic method. Soil samples are collected from prescribed depth intervals and analyzed in the lab using an efficient and precise modified pressure-calcimeter method for quantitative analysis of inorganic carbon concentration. Standard statistical methods are applied to point data, and representative results show significant correlations between changes in soil surface layer CaCO3 and changes in elevation consistent with the conceptual model; CaCO3 generally decreased in depositional areas and increased in erosional areas. Maps are derived from point measurements of elevation and soil CaCO3 to aid analyses. A map of erosional and depositional patterns at the study site, a rain-fed winter wheat field cropped in alternating wheat-fallow strips, shows the interacting effects of water and wind erosion affected by management and topography. Alternative sampling methods and depth intervals are discussed and recommended for future work relating soil erosion and deposition to soil CaCO3.
Soil Science Society of America Journal | 2002
Lucretia A. Sherrod; G. Dunn; G. A. Peterson; R. L. Kolberg
Soil Science Society of America Journal | 2002
T.M. Shaver; G. A. Peterson; L. R. Ahuja; D. G. Westfall; Lucretia A. Sherrod; G. Dunn
Soil Science Society of America Journal | 2003
Lucretia A. Sherrod; G. A. Peterson; D. G. Westfall; L. R. Ahuja
Nutrient Cycling in Agroecosystems | 2005
A. R. Mosier; Ardell D. Halvorson; G. A. Peterson; G.P. Robertson; Lucretia A. Sherrod
Agronomy Journal | 2005
C. A. Campbell; H. Henry Janzen; Keith Paustian; E. G. Gregorich; Lucretia A. Sherrod; B. C. Liang; R. P. Zentner
Soil Science Society of America Journal | 2005
Lucretia A. Sherrod; G. A. Peterson; D. G. Westfall; L. R. Ahuja