Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucy Stols is active.

Publication


Featured researches published by Lucy Stols.


Applied and Environmental Microbiology | 2003

Transformation of Fatty Acids Catalyzed by Cytochrome P450 Monooxygenase Enzymes of Candida tropicalis

William H. Eschenfeldt; Yeyan Zhang; Hend Samaha; Lucy Stols; L. Dudley Eirich; C. Ronald Wilson; Mark I. Donnelly

ABSTRACT Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in β-oxidation convert these substrates to long-chain α,ω-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is ω-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to ω-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized ω-hydroxy fatty acids, ultimately generating the α,ω-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for β-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.


Applied Biochemistry and Biotechnology | 1997

Expression of Ascaris suum Malic Enzyme in a Mutant Escherichia coli Allows Production of Succinic Acid from Glucose

Lucy Stols; Gopal Kulkarni; Ben G. Harris; Mark I. Donnelly

The malic enzyme gene of Ascaris suum, was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.


Applied and Environmental Microbiology | 2001

DNA from uncultured organisms as a source of 2,5-diketo-D-gluconic acid reductases.

William H. Eschenfeldt; Lucy Stols; Helga Rosenbaum; Zubin Khambatta; Elsie Quaite-Randall; Shan Wu; Donna C. Kilgore; Jonathan D. Trent; Mark I. Donnelly

ABSTRACT Total DNA of a population of uncultured organisms was extracted from soil samples, and by using PCR methods, the genes encoding two different 2,5-diketo-d-gluconic acid reductases (DKGRs) were recovered. Degenerate PCR primers based on published sequence information gave internal gene fragments homologous to known DKGRs. Nested primers specific for the internal fragments were combined with random primers to amplify flanking gene fragments from the environmental DNA, and two hypothetical full-length genes were predicted from the combined sequences. Based on these predictions, specific primers were used to amplify the two complete genes in single PCRs. These genes were cloned and expressed in Escherichia coli. The purified gene products catalyzed the reduction of 2,5-diketo-d-gluconic acid to 2-keto-l-gulonic acid. Compared to previously described DKGRs isolated fromCorynebacterium spp., these environmental reductases possessed some valuable properties. Both exhibited greater than 20-fold-higherkcat/Kmvalues than those previously determined, primarily as a result of better binding of substrate. The Kmvalues for the two new reductases were 57 and 67 μM, versus 2 and 13 mM for the Corynebacterium enzymes. Both environmental DKGRs accepted NADH as well as NADPH as a cosubstrate; other DKGRs and most related aldo-keto reductases use only NADPH. In addition, one of the new reductases was more thermostable than known DKGRs.


Applied and Environmental Microbiology | 2004

Cloning and Characterization of Three Fatty Alcohol Oxidase Genes from Candida tropicalis Strain ATCC 20336

L. Dudley Eirich; David Craft; Lisa Steinberg; Afreen Asif; William H. Eschenfeldt; Lucy Stols; Mark I. Donnelly; C. Ron Wilson

ABSTRACT Candida tropicalis (ATCC 20336) converts fatty acids to long-chain dicarboxylic acids via a pathway that includes among other reactions the oxidation of ω-hydroxy fatty acids to ω-aldehydes by a fatty alcohol oxidase (FAO). Three FAO genes (one gene designated FAO1 and two putative allelic genes designated FAO2a and FAO2b), have been cloned and sequenced from this strain. A comparison of the DNA sequence homology and derived amino acid sequence homology between these three genes and previously published Candida FAO genes indicates that FAO1 and FAO2 are distinct genes. Both genes were individually cloned and expressed in Escherichia coli. The substrate specificity and Km values for the recombinant FAO1 and FAO2 were significantly different. Particularly striking is the fact that FAO1 oxidizes ω-hydroxy fatty acids but not 2-alkanols, whereas FAO2 oxidizes 2-alkanols but not ω-hydroxy fatty acids. Analysis of extracts of strain H5343 during growth on fatty acids indicated that only FAO1 was highly induced under these conditions. FAO2 contains one CTG codon, which codes for serine (amino acid 177) in C. tropicalis but codes for leucine in E. coli. An FAO2a construct, with a TCG codon (codes for serine in E. coli) substituted for the CTG codon, was prepared and expressed in E. coli. Neither the substrate specificity nor the Km values for the FAO2a variant with a serine at position 177 were radically different from those of the variant with a leucine at that position.


Protein Expression and Purification | 2003

A less laborious approach to the high-throughput production of recombinant proteins in Escherichia coli using 2-liter plastic bottles.

Cynthia Sanville Millard; Lucy Stols; Pearl Quartey; Youngchang Kim; Irina Dementieva; Mark I. Donnelly

Contemporary approaches to biology often call for the high-throughput production of large amounts of numerous proteins for structural or functional studies. Even with the highly efficient protein expression systems developed in Escherichia coli, production of these proteins is laborious and time-consuming. We have simplified established protocols by the use of disposable culture vessels: common 2-liter polyethylene terephthalate beverage bottles. The bottles are inexpensive, fit conveniently in commonly available flask holders, and, because they are notched, provide sufficient aeration to support the growth of high-density cultures. The use of antibiotics and freshly prepared media alleviates the need for sterilization of media and significantly reduces the labor involved. Uninoculated controls exhibited no growth during the time required for protein expression in experimental cultures. The yield, solubility, activity, and pattern of crystallization of proteins expressed in bottles were comparable to those obtained under conventional culture conditions. After use, the bottles are discarded, reducing the risk of cross-contamination of subsequent cultures. The approach appears to be suitable for high-throughput production of proteins for structural or functional studies.


Journal of Structural and Functional Genomics | 2004

Production of selenomethionine-labeled proteins in two-liter plastic bottles for structure determination.

Lucy Stols; Cynthia Sanville Millard; Irina Dementieva; Mark I. Donnelly

A simplified approach developed recently for the production of heterologous proteins in Escherichia coli uses 2-liter polyethylene terephthalate beverage bottles as disposable culture vessels [Sanville Millard, C. et al. 2003. Protein Expr. Purif.29, 311–320]. The method greatly reduces the time and effort needed to produce native proteins for structural or functional studies. We now demonstrate that the approach is also well suited for production of proteins in defined media with incorporation of selenomethionine to facilitate structure determination by multiwavelength anomalous diffraction. Induction of a random set of Bacillus stearothermophilus target genes under the new protocols generated soluble selenomethionyl proteins in good yield. Several selenomethionyl proteins were purified in good yields and three were subjected to amino acid analysis. Incorporation of selenomethionine was determined to be greater than 95% in one protein and greater than 98% in the other two. In the preceding paper [Zhao et al., this issue, pp. 87–93], the approach is further extended to production of [U-15N]- or [U-13C, U-15N]-labeled proteins. The approach thus appears suitable for high-throughput production of proteins for structure determination by X-ray crystallography or nuclear magnetic resonance spectroscopy.


Journal of Structural and Functional Genomics | 2010

Cleavable C-terminal His-tag vectors for structure determination

William H. Eschenfeldt; Natalia Maltseva; Lucy Stols; Mark I. Donnelly; Minyi Gu; Boguslaw Nocek; Kemin Tan; Youngchang Kim; Andrzej Joachimiak

High-throughput structural genomics projects seek to delineate protein structure space by determining the structure of representatives of all major protein families. Generally this is accomplished by processing numerous proteins through standardized protocols, for the most part involving purification of N-terminally His-tagged proteins. Often proteins that fail this approach are abandoned, but in many cases further effort is warranted because of a protein’s intrinsic value. In addition, failure often occurs relatively far into the path to structure determination, and many failed proteins passed the first critical step, expression as a soluble protein. Salvage pathways seek to recoup the investment in this subset of failed proteins through alternative cloning, nested truncations, chemical modification, mutagenesis, screening buffers, ligands and modifying processing steps. To this end we have developed a series of ligation-independent cloning expression vectors that append various cleavable C-terminal tags instead of the conventional N-terminal tags. In an initial set of 16 proteins that failed with an N-terminal appendage, structures were obtained for C-terminally tagged derivatives of five proteins, including an example for which several alternative salvaging steps had failed. The new vectors allow appending C-terminal His6-tag and His6- and MBP-tags, and are cleavable with TEV or with both TEV and TVMV proteases.


Journal of Biological Chemistry | 2012

Functional and Structural Analysis of the Siderophore Synthetase AsbB through Reconstitution of the Petrobactin Biosynthetic Pathway from Bacillus anthracis

Tyler D. Nusca; Youngchang Kim; Natalia Maltseva; Jung Yeop Lee; William H. Eschenfeldt; Lucy Stols; Michael M. Schofield; Jamie B. Scaglione; Shandee D. Dixon; Daniel Oves-Costales; Gregory L. Challis; Philip C. Hanna; Brian F. Pfleger; Andrzej Joachimiak; David H. Sherman

Background: asbABCDEF mediates petrobactin production and facilitates anthrax virulence. Results: Purified AsbA-E proteins reconstituted petrobactin assembly in vitro. The crystal structure and enzymatic studies of AsbB highlight its function and role in the siderophore pathway. Conclusion: AsbB characterization demonstrated reaction flexibility and substrate positions in the binding pocket. Significance: Siderophore synthetases represent promising antimicrobial targets, and characterization of these versatile enzymes enables creation of novel compounds. Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds.


Journal of Structural and Functional Genomics | 2013

New LIC vectors for production of proteins from genes containing rare codons

William H. Eschenfeldt; Magdalena Makowska-Grzyska; Lucy Stols; Mark I. Donnelly; Robert Jedrzejczak; Andrzej Joachimiak

In the effort to produce proteins coded by diverse genomes, structural genomics projects often must express genes containing codons that are rare in the production strain. To address this problem, genes expressing tRNAs corresponding to those codons are typically coexpressed from a second plasmid in the host strain, or from genes incorporated into production plasmids. Here we describe the modification of a series of LIC pMCSG vectors currently used in the high-throughput (HTP) production of proteins to include crucial tRNA genes covering rare codons for Arg (AGG/AGA) and Ile (AUA). We also present variants of these new vectors that allow analysis of ligand binding or co-expression of multiple proteins introduced through two independent LIC steps. Additionally, to accommodate the cloning of multiple large proteins, the size of the plasmids was reduced by approximately one kilobase through the removal of non-essential DNA from the base vector. Production of proteins from core vectors of this series validated the desired enhanced capabilities: higher yields of proteins expressed from genes with rare codons occurred in most cases, biotinylated derivatives enabled detailed automated ligand binding analysis, and multiple proteins introduced by dual LIC cloning were expressed successfully and in near balanced stoichiometry, allowing tandem purification of interacting proteins.


Nucleic Acids Research | 2017

Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs

Karolina Michalska; Grant C. Gucinski; Fernando Garza-Sánchez; Parker M. Johnson; Lucy Stols; William H. Eschenfeldt; Gyorgy Babnigg; David A. Low; Celia W. Goulding; Andrzej Joachimiak; Christopher S. Hayes

Abstract Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3′-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3′-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxin specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3′-terminal adenylate of aa-tRNA. Together, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3′-end of aa-tRNA for entry into the nuclease active site.

Collaboration


Dive into the Lucy Stols's collaboration.

Top Co-Authors

Avatar

Mark I. Donnelly

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngchang Kim

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Frank R. Collart

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyorgy Babnigg

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Irina Dementieva

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge