Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lüder Wiebusch is active.

Publication


Featured researches published by Lüder Wiebusch.


Journal of Virology | 2011

The Latency-Associated UL138 Gene Product of Human Cytomegalovirus Sensitizes Cells to Tumor Necrosis Factor Alpha (TNF-α) Signaling by Upregulating TNF-α Receptor 1 Cell Surface Expression

Christina Montag; Jutta Wagner; Iris Gruska; Barbara Vetter; Lüder Wiebusch; Christian Hagemeier

ABSTRACT Many viruses antagonize tumor necrosis factor alpha (TNF-α) signaling in order to counteract its antiviral properties. One way viruses achieve this goal is to reduce TNF-α receptor 1 (TNFR1) on the surface of infected cells. Such a mechanism is also employed by human cytomegalovirus (HCMV), as recently reported by others and us. On the other hand, TNF-α has also been shown to foster reactivation of HCMV from latency. By characterizing a new variant of HCMV AD169, we show here that TNFR1 downregulation by HCMV only becomes apparent upon infection of cells with HCMV strains lacking the so-called ULb′ region. This region contains genes involved in regulating viral immune escape, cell tropism, or latency and is typically lost from laboratory strains but present in low-passage strains and clinical isolates. We further show that although ULb′-positive viruses also contain the TNFR1-antagonizing function, this activity is masked by a dominant TNFR1 upregulation mediated by the ULb′ gene product UL138. Isolated expression of UL138 in the absence of viral infection upregulates TNFR1 surface expression and can rescue both TNFR1 reexpression and TNF-α responsiveness of cells infected with an HCMV mutant lacking the UL138-containing transcription unit. Given that the UL138 gene product is one of the few genes recognized to be expressed during HCMV latency and the known positive effects of TNF-α on viral reactivation, we suggest that via upregulating TNFR1 surface expression UL138 may sensitize latently infected cells to TNF-α-mediated reactivation of HCMV.


PLOS Pathogens | 2010

Cyclin-Dependent Kinase Activity Controls the Onset of the HCMV Lytic Cycle

Martin Zydek; Christian Hagemeier; Lüder Wiebusch

The onset of human cytomegalovirus (HCMV) lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE) gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK) inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2) cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state.


Cancer Research | 2006

Combined Effect of Proteasome and Calpain Inhibition on Cisplatin-Resistant Human Melanoma Cells

Izabela Młynarczuk-Biały; Heike Roeckmann; Ulrike Kuckelkorn; Boris Schmidt; Sumaira Umbreen; Jakub Golab; Antje Ludwig; Christina Montag; Lüder Wiebusch; Christian Hagemeier; Dirk Schadendorf; Peter-M. Kloetzel; Ulrike Seifert

Resistance of tumor cells to cisplatin is a common feature frequently encountered during chemotherapy against melanoma caused by various known and unknown mechanisms. To overcome drug resistance toward cisplatin, a targeted treatment using alternative agents, such as proteasome inhibitors, has been investigated. This combination could offer a new therapeutic approach. Here, we report the biological effects of proteasome inhibitors on the parental cisplatin-sensitive MeWo human melanoma cell line and its cisplatin-resistant MeWo(cis1) variant. Our experiments show that proteasome inhibitor treatment of both cell lines impairs cell viability at concentrations that are not toxic to primary human fibroblasts in vitro. However, compared with the parental MeWo cell line, significantly higher concentrations of proteasome inhibitor are required to reduce cell viability of MeWo(cis1) cells. Moreover, whereas proteasome activity was inhibited to the same extent in both cell lines, IkappaBalpha degradation and nuclear factor-kappaB (NF-kappaB) activation in MeWo(cis1) cells was proteasome inhibitor independent but essentially calpain inhibitor sensitive. In support, a calpain-specific inhibitor impaired NF-kappaB activation in MeWo(cis1) cells. Here, we show that cisplatin resistance in MeWo(cis1) is accompanied by a change in the NF-kappaB activation pathway in favor of calpain-mediated IkappaBalpha degradation. Furthermore, combined exposure to proteasome and calpain inhibitor resulted in additive effects and a strongly reduced cell viability of MeWo(cis1) cells. Thus, combined strategies targeting distinct proteolytic pathways may help to overcome mechanisms of drug resistance in tumor cells.


Journal of Virology | 2008

Cell Cycle-Independent Expression of Immediate-Early Gene 3 Results in G1 and G2 Arrest in Murine Cytomegalovirus-Infected Cells

Lüder Wiebusch; Anke Neuwirth; Linus Grabenhenrich; Sebastian Voigt; Christian Hagemeier

ABSTRACT The infectious cycle of human cytomegalovirus (HCMV) is intricately linked to the hosts cell cycle. Viral gene expression can be initiated only in G0/G1 phase. Once expressed, the immediate-early gene product IE2 prevents cellular DNA synthesis, arresting infected cells with a G1 DNA content. This function is required for efficient viral replication in vitro. A prerequisite for addressing its in vivo relevance is the characterization of cell cycle-regulatory activities of CMV species for which animal models have been established. Here, we show that murine CMV (MCMV), like HCMV, has a strong antiproliferative capacity and arrests cells in G1. Unexpectedly, and in contrast to HCMV, MCMV can also block cells that have passed through S phase by arresting them in G2. Moreover, MCMV can also replicate in G2 cells. This is made possible by the cell cycle-independent expression of MCMV immediate-early genes. Transfection experiments show that of several MCMV candidate genes, only immediate-early gene 3 (ie3), the homologue of HCMV IE2, exhibits cell cycle arrest activity. Accordingly, an MCMV ie3 deletion mutant has lost the ability to arrest cells in either G1 or G2. Thus, despite interspecies variations in the cell cycle dependence of viral gene expression, the central theme of HCMV IE2-induced cell cycle arrest is conserved in the murine counterpart, raising the possibility of studying its physiological relevance at the level of the whole organism.


Journal of Virology | 2004

The Putative Zinc Finger of the Human Cytomegalovirus IE2 86-Kilodalton Protein Is Dispensable for DNA Binding and Autorepression, Thereby Demarcating a Concise Core Domain in the C Terminus of the Protein

Jasmin Asmar; Lüder Wiebusch; Matthias Truss; Christian Hagemeier

ABSTRACT The IE2 86-kDa gene product is an essential regulatory protein of human cytomegalovirus (HCMV) with several functions, including transactivation, negative autoregulation, and cell cycle regulation. In order to understand the physiological significance of each of the IE2 functions, discriminating mutants of IE2 are required that can be tested in a viral background. However, no such mutants of IE2 are available, possibly reflecting structural peculiarities of the large and ill-defined C-terminal domain of IE2. Here, we revisited the C-terminal domain by analyzing IE2 mutants for transactivation, DNA binding, autoregulation, and cell cycle regulation in parallel. We found it to contain an unexpectedly concise core domain (amino acids 450 to 544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (amino acids 290 to 449) generally tolerates mutations much better. Although it contributes more specific sequence information to distinct IE2 activities, none of the mutations analyzed abolished any particular function. The core is demarcated from the adjacent region by the putative zinc finger region (amino acids 428 to 452). Surprisingly, the deletion of the putative zinc finger region from IE2 revealed that this region is entirely dispensable for any of the IE2 functions tested here in transfection assays. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants discriminating between various IE2 functions that can then be tested in a viral background.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Human cytomegalovirus tegument protein pp150 acts as a cyclin A2–CDK-dependent sensor of the host cell cycle and differentiation state

Boris Bogdanow; Henry Weisbach; Jens von Einem; Sarah Straschewski; Sebastian Voigt; Michael Winkler; Christian Hagemeier; Lüder Wiebusch

Significance Depending on the host cell type and differentiation status, herpesviruses establish different modes of infection to either maintain or replicate their genomes. How viruses discriminate between individual host cell environments upon infection is poorly understood. Here we identify a viral sensor mechanism that restricts human cytomegalovirus (HCMV) replication to the G0/G1 phase of the cell division cycle and to differentiated cells. The mechanism is based on the HCMV tegument 150-kDa phosphoprotein which enters the cell as a constituent of the virus particle, interacts with cyclin A2, and blocks the onset of viral lytic gene expression when cyclin A2-dependent kinase activity is high. This suggests a scenario where specific tegument–host interactions enable herpesviruses to select sites of silent or productive infection. Upon cell entry, herpesviruses deliver a multitude of premade virion proteins to their hosts. The interplay between these incoming proteins and cell-specific regulatory factors dictates the outcome of infections at the cellular level. Here, we report a unique type of virion–host cell interaction that is essential for the cell cycle and differentiation state-dependent onset of human cytomegalovirus (HCMV) lytic gene expression. The major tegument 150-kDa phosphoprotein (pp150) of HCMV binds to cyclin A2 via a functional RXL/Cy motif resulting in its cyclin A2-dependent phosphorylation. Alanine substitution of the RXL/Cy motif prevents this interaction and allows the virus to fully escape the cyclin-dependent kinase (CDK)-mediated block of immediate early (IE) gene expression in S/G2 phase that normally restricts the onset of the HCMV replication cycle to G0/G1. Furthermore, the cyclin A2–CDK–pp150 axis is also involved in the establishment of HCMV quiescence in NTera2 cells, showing the importance of this molecular switch for differentiation state-dependent regulation of IE gene expression. Consistent with the known nucleocapsid-binding function of pp150, its RXL/Cy-dependent phosphorylation affects gene expression of the parental virion only, suggesting a cis-acting, virus particle-associated mechanism of control. The pp150 homologs of other primate and mammalian CMVs lack an RXL/Cy motif and accordingly even the nearest relative of HCMV, chimpanzee CMV, starts its lytic cycle in a cell cycle-independent manner. Thus, HCMV has evolved a molecular sensor for cyclin A2–CDK activity to restrict its IE gene expression program as a unique level of self-limitation and adaptation to its human host.


Journal of Virology | 2012

Inhibition of Human Cytomegalovirus Immediate-Early Gene Expression by Cyclin A2-Dependent Kinase Activity

Jennifer D. Oduro; Ralf Uecker; Christian Hagemeier; Lüder Wiebusch

ABSTRACT Human cytomegalovirus (HCMV) starts its lytic replication cycle only in the G0/G1 phase of the cell division cycle. S/G2 cells can be infected but block the onset of immediate-early (IE) gene expression. This block can be overcome by inhibition of cyclin-dependent kinases (CDKs), suggesting that cyclin A2, the only cyclin with an S/G2-specific activity profile, may act as a negative regulator of viral gene expression. To directly test this hypothesis, we generated derivatives of an HCMV-permissive glioblastoma cell line that express cyclin A2 in a constitutive, cell cycle-independent manner. We demonstrate that even moderate cyclin A2 overexpression in G1 was sufficient to severely compromise the HCMV replicative cycle after high-multiplicity infection. This negative effect was composed of a strong but transient inhibition of IE gene transcription and a more sustained alteration of IE mRNA processing, resulting in reduced levels of UL37 and IE2, an essential transactivator of viral early gene expression. Consistently, cyclin A2-overexpressing cells showed a strong delay of viral early and late gene expression, as well as virus reproduction. All effects were dependent on CDK activity, as a cyclin A2 mutant deficient in CDK binding was unable to interfere with the HCMV infectious cycle. Interestingly, murine CMV, whose IE gene expression is known to be cell cycle independent, is not affected by cyclin A2. Instead, it upregulates cyclin A2-associated kinase activity upon infection. Understanding the mechanisms behind the HCMV-specific action of cyclin A2-CDK might reveal new targets for antiviral strategies.


Journal of General Virology | 2011

General blockade of human cytomegalovirus immediate-early mRNA expression in the S/G2 phase by a nuclear, Daxx- and PML-independent mechanism.

Martin Zydek; Ralf Uecker; Nina Tavalai; Thomas Stamminger; Christian Hagemeier; Lüder Wiebusch

The onset of human cytomegalovirus (HCMV) lytic replication is strictly controlled by the host cell division cycle. Although viral entry of S/G2-phase cells is unperturbed expression of major immediate-early (MIE) genes IE1 and IE2 is tightly blocked in these cells. Besides the finding that cyclin-dependent kinase (CDK) activity is required for IE1/IE2 repression little is known about the nature of this cell cycle-dependent block. Here, we show that the block occurs after nuclear entry of viral DNA and prevents the accumulation of IE1/IE2 mRNAs, suggesting an inhibition of transcription. Remarkably, the presence of cis-regulatory regions of the MIE locus is neither sufficient nor necessary for IE1/IE2 repression in the S/G2 phase. Furthermore, the block of viral mRNA expression also affects other immediate-early transcribed regions, i.e. the US3 and UL36-38 gene loci. This suggests a mechanism of repression that acts in a general and not a gene-specific fashion. Such a nuclear, genome-wide repression of HCMV is typically mediated by the intrinsic immune defence at nuclear domain 10 (ND10) structures. However, we found that neither Daxx nor PML, the main players of ND10-based immunity, are required for the block to viral gene expression in the S/G2 phase. In addition, the viral tegument protein pp71 (pUL82), a major antagonist of the intrinsic immunity at pre-immediate-early times of infection, proved to be functional in S-phase cells. This suggests the existence of a yet undiscovered, CDK-dependent mechanism exerting higher-level control over immediate-early mRNA expression in HCMV-infected cells.


PLOS Pathogens | 2014

PUL21a-Cyclin A2 Interaction is Required to Protect Human Cytomegalovirus-Infected Cells from the Deleterious Consequences of Mitotic Entry

Martin Eifler; Ralf Uecker; Henry Weisbach; Boris Bogdanow; Ellen Richter; Lydia König; Barbara Vetter; Tihana Lenac-Rovis; Stipan Jonjić; Heidemarie Neitzel; Christian Hagemeier; Lüder Wiebusch

Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and cell death.


PLOS Pathogens | 2017

Synthetic lethal mutations in the cyclin A interface of human cytomegalovirus

Henry Weisbach; Christoph Schablowsky; Barbara Vetter; Iris Gruska; Christian Hagemeier; Lüder Wiebusch

Generally, the antagonism between host restriction factors and viral countermeasures decides on cellular permissiveness or resistance to virus infection. Human cytomegalovirus (HCMV) has evolved an additional level of self-imposed restriction by the viral tegument protein pp150. Depending on a cyclin A-binding motif, pp150 prevents the onset of viral gene expression in the S/G2 cell cycle phase of otherwise fully permissive cells. Here we address the physiological relevance of this restriction during productive HCMV infection by employing a cyclin A-binding deficient pp150 mutant virus. One consequence of unrestricted viral gene expression in S/G2 was the induction of a G2/M arrest. G2-arrested but not mitotic cells supported viral replication. Cyclin A destabilization by the viral gene product pUL21a was required to maintain the virus-permissive G2-arrest. An HCMV double-point mutant where both pp150 and pUL21a are disabled in cyclin A interaction forced mitotic entry of the majority of infected cells, with a severe negative impact on cell viability and virus growth. Thus, pp150 and pUL21a functionally cooperate, together building a cell cycle synchronization strategy of cyclin A targeting and avoidance that is essential for productive HCMV infection.

Collaboration


Dive into the Lüder Wiebusch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Zydek

Technical University of Applied Sciences Wildau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge