Ludmila A. Voloboueva
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ludmila A. Voloboueva.
The Journal of Neuroscience | 2007
Yi-Bing Ouyang; Ludmila A. Voloboueva; Lijun Xu; Rona G. Giffard
Transient global ischemia, as with cardiac arrest, causes loss of CA1 hippocampal neurons 2–4 d later, whereas nearby dentate gyrus (DG) neurons are relatively resistant. Whether differential astrocyte vulnerability in ischemic injury contributes to CA1 neuronal death is uncertain. Here, we find that CA1 astrocytes are more sensitive to ischemia than DG astrocytes. In rats subjected to transient forebrain ischemia, CA1 astrocytes lose glutamate transport activity and immunoreactivity for GFAP, S100β, and glutamate transporter GLT-1 within a few hours of reperfusion, but without astrocyte cell death. Oxidative stress may contribute to the observed selective CA1 changes, because CA1 astrocytes show early increases in mitochondrial free radicals and reduced mitochondrial membrane potential. Similar changes were not observed in DG astrocytes. Upregulation of GLT-1 expression in astrocytes with ceftriaxone protected CA1 neurons from forebrain ischemia. We suggest that greater oxidative stress and loss of GLT-1 function selectively in CA1 astrocytes is central to the well known delayed death of CA1 neurons.
Journal of Cerebral Blood Flow and Metabolism | 2009
Lijun Xu; Ludmila A. Voloboueva; Yi-Bing Ouyang; John F. Emery; Rona G. Giffard
Mitochondria are known to be central to the cells response to ischemia, because of their role in energy generation, in free radical generation, and in the regulation of apoptosis. Heat shock protein 75 (Hsp75/Grp75/mortalin/TRAP1) is a member of the HSP70 chaperone family, which is targeted to mitochondria. Overexpression of Hsp75 was achieved in rat brain by DNA transfection, and expression was observed in both astrocytes and neurons. Rats were subjected to 100 mins middle cerebral artery occlusion followed by assessment of infarct volume, neurological score, mitochondrial function, and levels of oxidative stress at 24 h reperfusion. Overexpression of Hsp75 reduced infarct area from 44.6%±21.1% to 25.7%±12.1% and improved neurological outcome significantly. This was associated with improved mitochondrial function as shown by protection of complex IV activity, marked reduction of free radical generation detected by hydroethidine fluorescence, reduction of lipid peroxidation detected by 4-hydroxy-2-nonenol immunoreactivity, and increased preservation of ATP levels. This suggests that targeting mitochondria for protection may be a useful strategy to reduce ischemic brain injury.
Journal of Cerebral Blood Flow and Metabolism | 2008
Ludmila A. Voloboueva; Melissa Duan; Yi-Bing Ouyang; John F. Emery; Christian Stoy; Rona G. Giffard
Mitochondrial heat shock protein 70 (mtHsp70/Hsp75/Grp75/mortalin/TRAP-1/PBP74) is an essential mitochondrial chaperone and a member of the heat shock protein 70 (HSP70) family. Although many studies have shown the protective properties of overexpression of the cytosolic inducible member of the HSP70 family, Hsp72, few studies have investigated the protective potential of Hsp75 against ischemic injury. Mitochondria are one of the primary targets of ischemic injury in astrocytes. In this study, we analyzed the effects of Hsp75 overexpression on cellular levels of reactive oxygen species (ROS), mitochondrial membrane potential, ATP levels, and viability during the ischemia-like conditions of oxygen-glucose deprivation (OGD) or glucose deprivation (GD) in primary astrocytic cultures. We show that Hsp75 overexpression decreases ROS production and preserves mitochondrial membrane potential during GD, and preserves ATP levels and cell viability during OGD. These findings indicate that Hsp75 can provide protection against ischemia-like in vitro injury and suggest that it should be further studied as a potential candidate for protection against ischemic injury.
Glia | 2010
Lijun Xu; John F. Emery; Yi-Bing Ouyang; Ludmila A. Voloboueva; Rona G. Giffard
Brief forebrain ischemia is a model of the delayed hippocampal neuronal loss seen in patients following cardiac arrest and resuscitation. Previous studies demonstrated that selective dysfunction of hippocampal CA1 subregion astrocytes occurs hours to days before delayed neuronal death. In this study we tested the strategy of directing protection to astrocytes to protect neighboring neurons from forebrain ischemia. Two well‐studied protective proteins, heat shock protein 72 (Hsp72) or superoxide dismutase 2 (SOD2), were genetically targeted for expression in astrocytes using the astrocyte‐specific human glial fibrillary acidic protein (GFAP) promoter. The expression constructs were injected stereotacticly immediately above the hippocampal CA1 region on one side of the rat brain two days prior to forebrain ischemia. Cell type specific expression was confirmed by double label immunohistochemistry. When the expression constructs were injected two days before transient forebrain ischemia, the loss of CA1 hippocampal neurons observed seven days later was significantly reduced on the injected side compared with controls. This neuroprotection was associated with significantly better preservation of astrocyte glutamate transporter‐1 immunoreactivity at 5‐h reperfusion and reduced oxidative stress. Improving the resistance of astrocytes to ischemic stress by targeting either the cytosolic or mitochondrial compartment was thus associated with preservation of CA1 neurons following forebrain ischemia. Targeting astrocytes is a promising strategy for neuronal preservation following cardiac arrest and resuscitation.
FEBS Letters | 2013
Ludmila A. Voloboueva; John F. Emery; Xiaoyun Sun; Rona G. Giffard
Recent studies suggest a link between mitochondria and proinflammatory cytokine generation. We previously demonstrated that overexpression of mitochondrial chaperone glucose‐regulated protein75 (Grp75/mortalin) protects mitochondria. In this study we investigated the modulation of the lipopolisaccharide (LPS)‐induced inflammatory response of microglial BV‐2 cells by Grp75. We demonstrate that LPS‐induced activation promotes significant metabolic changes suppressing mitochondrial function and increasing glycolysis. Overexpression of Grp75 attenuates the LPS‐induced oxidative and metabolic responses, and suppresses proinflammatory activation, which depends on both NF‐κB activation and lactate. Thus overexpression of Grp75 provides a novel strategy to modulate proinflammatory cytokine production of relevance to inflammation‐associated pathologies.
Journal of Neuroscience Research | 2011
Ludmila A. Voloboueva; Rona G. Giffard
The process of neurogenesis continues throughout life, with thousands of new neurons generated every day in the mammalian brain. Impairment of hippocampal neurogenesis has been suggested to be involved in neurodegenerative conditions, including the cognitive decline associated with aging, Alzheimers disease, Parkinsons disease, and ionizing radiation. These neurodegenerative conditions are all characterized by proinflammatory changes and increased numbers of activated microglia. Activated microglia produce a variety of proinflammatory factors, including interleukin‐6, tumor necrosis factor‐α, reactive oxygen species, and nitric oxide, all of which are antineurogenic. These same factors have also been shown to suppress mitochondrial function, but the role of mitochondria in neurogenesis remains barely investigated. This brief review summarizes the findings of several studies that support a role for mitochondrial impairment as part of the mechanism of the reduction of neurogenesis associated with inflammation.
Journal of Neurochemistry | 2007
Ludmila A. Voloboueva; Sang Won Suh; Raymond A. Swanson; Rona G. Giffard
Much evidence suggests that astrocytes protect neurons against ischemic injury. Although astrocytes are more resistant to some insults than neurons, few studies offer insight into the real time changes of astrocytic protective functions with stress. Mitochondria are one of the primary targets of ischemic injury in astrocytes. We investigated the time course of changes in astrocytic ATP levels, plasma membrane potential, and glutamate uptake, a key protective function, induced by mitochondrial inhibition. Our results show that significant functional change precedes reduction in astrocytic viability with mitochondrial inhibition. Using the mitochondrial inhibitor fluorocitrate (FC, 0.25 mmol/L) that is preferentially taken by astrocytes we found that inhibition of astrocyte mitochondria increased vulnerability of co-cultured neurons to glutamate toxicity. In our studies, the rates of FC-induced astrocytic mitochondrial depolarization were accelerated in mixed astrocyte/neuron cultures. We hypothesized that the more rapid mitochondrial depolarization was promoted by an additional energetic demand imposed be the co-cultured neurons. To test this hypothesis, we exposed pure astrocytic cultures to 0.01-1 mmol/L aspartate as a metabolic load. Aspartate application accelerated the rates of FC-induced mitochondrial depolarization, and, at 1 mmol/L, induced astrocytic death, suggesting that strong energetic demands during ischemia can compromise astrocytic function and viability.
The Journal of Neuroscience | 2010
Ludmila A. Voloboueva; Star W. Lee; John F. Emery; Theo D. Palmer; Rona G. Giffard
The impairment of hippocampal neurogenesis has been linked to the pathogenesis of neurological disorders from chronic neurodegenerative disease to the progressive cognitive impairment of children who receive brain irradiation. Numerous studies provide evidence that inflammation downregulates neurogenesis, with multiple factors contributing to this impairment. Although mitochondria are one of the primary targets of inflammatory injury, the role of mitochondrial function in the modulation of neurogenesis remains relatively unstudied. In this study, we used neurosphere-derived cells to show that immature doublecortin (Dcx)-positive neurons are uniquely sensitive to mitochondrial inhibition, demonstrating rapid loss of mitochondrial potential and cell viability compared with glial cells and more mature neurons. Mitochondrial inhibition for 24 h produced no significant changes in astrocyte or oligodendrocyte viability, but reduced viability of mature neurons by 30%, and reduced survival of Dcx+ cells by 60%. We demonstrate that protection of mitochondrial function with mitochondrial metabolites or the mitochondrial chaperone mtHsp75/mortalin partially reverses the inflammation-associated impairment of neurogenesis in vitro and in irradiated mice in vivo. Our findings highlight mitochondrial mechanisms involved in neurogenesis and indicate mitochondria as a potential target for protective strategies to prevent the impairment of neurogenesis by inflammation.
Journal of Neuroscience Research | 2015
Xiaoyun Sun; Ludmila A. Voloboueva; Creed M. Stary; Rona G. Giffard
Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2–5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.
The Journal of Neuroscience | 2017
Ludmila A. Voloboueva; Xiaoyun Sun; Lijun Xu; Yi-Bing Ouyang; Rona G. Giffard
Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury. Mitochondrial protection was shown to improve survival of young neurons. This study tested whether reducing cellular microRNA-210 (miR-210) would enhance mitochondrial function and improve survival of young murine neurons under inflammatory conditions. Several studies have demonstrated the potential of miR-210 inhibition to enhance and protect mitochondrial function through upregulation of mitochondrial proteins. Here, miR-210 inhibition significantly increased neuronal survival and protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase in differentiating NSC cultures exposed to inflammatory mediators. Unexpectedly, we found that reducing miR-210 significantly attenuated NSC proliferation upon induction of differentiation. Further investigation revealed that increased mitochondrial function suppressed the shift to primarily glycolytic metabolism and reduced mitochondrial length characteristic of dividing cells. Activation of AMP-regulated protein kinase–retinoblastoma signaling is important in NSC proliferation and the reduction of this activation observed by miR-210 inhibition is one mechanism contributing to the reduced proliferation. Postinjury neurogenesis occurs as a burst of proliferation that peaks in days, followed by migration and differentiation over weeks. Our studies suggest that mitochondrial protective miR-210 inhibition should be delayed until after the initial burst of proliferation, but could be beneficial during the prolonged differentiation stage. SIGNIFICANCE STATEMENT Increasing the success of endogenous neurogenesis after brain injury holds therapeutic promise. Postinjury inflammation markedly reduces newborn neuron survival. This study found that enhancement of mitochondrial function by reducing microRNA-210 (miR-210) levels could improve survival of young neurons under inflammatory conditions. miR-210 inhibition protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase. Conversely, we observed decreased precursor cell proliferation likely due to suppression of the AMP-regulated protein kinase–retinoblastoma axis with miR-210 inhibition. Therefore, mitochondrial protection is a double-edged sword: early inhibition reduces proliferation, but inhibition later significantly increases neuroblast survival. This explains in part the contradictory published reports of the effects of miR-210 on neurogenesis.