Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Mammi is active.

Publication


Featured researches published by Stefano Mammi.


PLOS Biology | 2008

Conformational Equilibria in Monomeric α-Synuclein at the Single-Molecule Level

Massimo Sandal; Francesco Valle; Isabella Tessari; Stefano Mammi; Elisabetta Bergantino; Francesco Musiani; Marco Brucale; Luigi Bubacco; Bruno Samorì

Human α-Synuclein (αSyn) is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of αSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between αSyns unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy–based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant αSyn. The conformational heterogeneity of monomeric αSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and “β-like” structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the “β-like” structures significantly increased in different conditions promoting the aggregation of αSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric αSyn conformers, positively correlated with conditions known to promote the formation of aggregates. A new tool is thus made available to test directly the influence of mutations and pharmacological strategies on the conformational equilibrium of monomeric αSyn.


Journal of Biological Chemistry | 2007

Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine ANALYSIS OF THE INTERACTIONS WITH α-SYNUCLEIN

Marco Bisaglia; Stefano Mammi; Luigi Bubacco

Oxidative stress appears to be directly involved in the pathogenesis of several neurodegenerative disorders, including Alzheimer and Parkinson diseases. Nigral dopaminergic neurons are particularly exposed to oxidative stress because a pathological accumulation of cytosolic dopamine gives rise to various toxic molecules, including free radicals and reactive quinones. These latter species can react with proteins preventing them from exerting their physiological functions. Among the possible targets of quinones, α-synuclein is of primary interest because of its direct involvement in dopamine metabolism. Contrary to the neurotoxic processes, neuromelanin synthesis seems to play a protective role by its ability to sequester a variety of potentially damaging substances. In this study, we carried out a kinetic and structural analysis of the early oxidation products of dopamine. Specifically, considering the potential high toxicity of aminochrome for both cells and mitochondria, we focused our attention on its rearrangement to 5,6-dihydroxyindole. After the spectroscopic characterization of the products derived from the oxidation of dopamine, the structural information obtained was used to analyze the reactivity of quinones toward α-synuclein. Our results suggest that indole-5,6-quinone, rather than dopamine-o-quinone or aminochrome, is the reactive species. We propose that the observed reactivity could represent a general reaction pathway whenever cysteinyl residues are absent in proteins or if they are sterically protected.


The FASEB Journal | 2009

Structural insights on physiological functions and pathological effects of α-synuclein

Marco Bisaglia; Stefano Mammi; Luigi Bubacco

α‐Synuclein is an intrinsically unfolded protein that can adopt a partially helical structure when it interacts with different lipid membranes. Its pathological relevance is linked to its involvement in several neurodegenerative disorders including Parkinsons disease, Alzheimers disease, and dementia with Lewy bodies. Typical of such ailments is the presence of a‐synuclein aggregates in a β‐structure that can be soluble or precipitate. This review focuses on the structural knowledge acquired in recent years on the various conformations accessible to α‐synuclein and to its pathologically relevant mutants. Furthermore, the role of the different variables of the chemical environments that govern the equilibria among the accessible conformations is also reviewed. The hypotheses that rationalize the relevance of the individual structural features and conformations for the physiological function of the protein or for its purported pathological role are described and compared.—Bisaglia, M., Mammi, S., Bubacco, L. Structural insights on physiological functions and pathological effects of a‐synuclein. FASEB J. 23, 329‐340 (2009)


Journal of the American Chemical Society | 2008

Broken Helix in Vesicle and Micelle-Bound α-Synuclein: Insights from Site-Directed Spin Labeling-EPR Experiments and MD Simulations

Marco Bortolus; Fabio Tombolato; Isabella Tessari; Marco Bisaglia; Stefano Mammi; Luigi Bubacco; Alberta Ferrarini; Anna Lisa Maniero

The region 35-43 of human alpha-Synuclein bound to small unilamellar lipid vesicles and to sodium dodecyl sulfate micelles has been investigated by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The distance distributions obtained from spectral fitting have been analyzed on the basis of the allowed rotamers of the spin-label side-chain. Very similar results have been obtained in the two environments: an unbroken helical structure of the investigated region can be ruled out. The distance distributions are rather compatible with the presence of conformational disorder, in agreement with previous findings for micelle-bound alpha-Synuclein. The propensity for helix breaking is confirmed by molecular dynamics simulations.


Biochemical and Biophysical Research Communications | 2010

Dopamine quinones interact with α-synuclein to form unstructured adducts

Marco Bisaglia; Laura Tosatto; Francesca Munari; Isabella Tessari; Patrizia Polverino de Laureto; Stefano Mammi; Luigi Bubacco

alpha-Synuclein (alphasyn) fibril formation is considered a central event in the pathogenesis of Parkinsons disease (PD). In recent years, it has been proposed that prefibrillar annular oligomeric beta-sheet-rich species, called protofibrils, rather than fibrils themselves, may be the neurotoxic species. The oxidation products of dopamine (DAQ) can inhibit alphasyn fibril formation supporting the idea that DAQ might stabilize alphasyn protofibrils. In the present work, through different biochemical and biophysical techniques, we isolated and structurally characterized alphasyn/DAQ adducts. Contrary to protofibrils, we demonstrated that alphasyn/DAQ adducts retain an unfolded conformation. We then investigated the nature of the modifications induced on alphasyn by DAQ. Our results indicate that only a small fraction of alphasyn interacts with DAQ in a covalent way, so that non-covalent interaction appears to be the major modification induced by DAQ on alphasyn.


Journal of Agricultural and Food Chemistry | 2010

1H nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin.

Elisabetta Schievano; Evaristo Peggion; Stefano Mammi

In this work, we present a new NMR study, coupled with chemometric analysis, on nonvolatile organic honey components. The extraction method is simple and reproducible. The 1H NMR spectra of chloroform extracts acquired with a fast and new pulse sequence were used to characterize and differentiate by chemometric analysis 118 honey samples of four different botanical origins (chestnut, acacia, linden, and polyfloral). The spectra collection, processing, and analysis require only 30 min. The 1H spectrum provides a fingerprint for each honey type, showing many characteristic peaks in all spectral regions. Principal component analysis (PCA) and projection to latent structures by partial least squares-discriminant analysis (PLS-DA) were performed on selected signals of the spectra to discriminate the different botanical types and to identify characteristic metabolites for each honey type. A distinct discrimination among samples was achieved. According to the distance to model criterion, there was no overlap between the four models, which proved to be specific for each honey type. The PLS-DA model obtained has a correlation coefficient R2 of 0.67 and a validation correlation coefficient Q2 of 0.77. The discriminant analysis allowed us to classify correctly 100% of the samples. A classification index can be calculated and used to determine the floral origin of honey as an alternative to the melissopalinology test and possibly to determine the percentage of various botanical species in polyfloral samples. Preliminary data on the identification of marker compounds for each botanical origin are presented.


Journal of Biological Chemistry | 2008

The Reaction of α-Synuclein with Tyrosinase POSSIBLE IMPLICATIONS FOR PARKINSON DISEASE

Isabella Tessari; Marco Bisaglia; Francesco Valle; Bruno Samorì; Elisabetta Bergantino; Stefano Mammi; Luigi Bubacco

Oxidative stress appears to be directly involved in the pathogenesis of Parkinson disease. Several different pathways have been identified for the production of oxidative stress conditions in nigral dopaminergic neurons, including a pathological accumulation of cytosolic dopamine with the subsequent production of toxic reactive oxygen species or the formation of highly reactive quinone species. On these premises, tyrosinase, a key copper enzyme known for its role in the synthesis of melanin in skin and hair, has been proposed to take part in the oxidative chemistry related to Parkinson disease. A study is herein presented of the in vitro reactivity of tyrosinase with α-synuclein, aimed at defining the molecular basis of their synergistic toxic effect. The results presented here indicate that, in conformity with the stringent specificity of tyrosinase, the exposed tyrosine side-chains are the reactive centers of α-synuclein. The reactivity of α-synuclein depends on whether it is free or membrane bound, and the chemical modifications on the tyrosinase-treated α-synuclein strongly influence its aggregation properties. On the basis of our results, we propose a cytotoxic model which includes a possible new toxic role for α-synuclein exacerbated by its direct chemical modification by tyrosinase.Oxidative stress appears to be directly involved in the pathogenesis of Parkinson disease. Several different pathways have been identified for the production of oxidative stress conditions in nigral dopaminergic neurons, including a pathological accumulation of cytosolic dopamine with the subsequent production of toxic reactive oxygen species or the formation of highly reactive quinone species. On these premises, tyrosinase, a key copper enzyme known for its role in the synthesis of melanin in skin and hair, has been proposed to take part in the oxidative chemistry related to Parkinson disease. A study is herein presented of the in vitro reactivity of tyrosinase with alpha-synuclein, aimed at defining the molecular basis of their synergistic toxic effect. The results presented here indicate that, in conformity with the stringent specificity of tyrosinase, the exposed tyrosine side-chains are the reactive centers of alpha-synuclein. The reactivity of alpha-synuclein depends on whether it is free or membrane bound, and the chemical modifications on the tyrosinase-treated alpha-synuclein strongly influence its aggregation properties. On the basis of our results, we propose a cytotoxic model which includes a possible new toxic role for alpha-synuclein exacerbated by its direct chemical modification by tyrosinase.


Neuromolecular Medicine | 2009

Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson’s Disease

Marco Bisaglia; Isabella Tessari; Stefano Mammi; Luigi Bubacco

The most recent literature on the interaction between α-synuclein in its several aggregation states and metal ions is discussed. This analysis shows two major types of interactions. Binding sites are present in the C-terminal region, and similar, low affinity (in the millimolar range) is exhibited toward many different metal ions, including copper and iron. A more complex scenario emerges for these latter metal ions, which are also able to coordinate with high affinity (in the micromolar range) to the N-terminal region of α-synuclein. Moreover, these redox-active metal ions may induce chemical modifications on the protein in vitro and in the reducing intracellular environment, and these modifications might be relevant for the aggregation properties of α-synuclein. Finally, an attempt is made to contextualize the interaction between α-synuclein and these metal ions in the framework of the elusive and multifactorial pathogenesis of Parkinson’s disease.


Biochimica et Biophysica Acta | 2010

Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease.

Marco Bisaglia; Maria Eugenia Soriano; Irene Arduini; Stefano Mammi; Luigi Bubacco

Oxidative stress and mitochondrial dysfunction, especially at the level of complex I of the electronic transport chain, have been proposed to be involved in the pathogenesis of Parkinson disease (PD). A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine (DA) and produce various toxic molecules, i.e., free radicals and quinone species (DAQ). It has been shown that DA oxidation products can induce various forms of mitochondrial dysfunction, such as mitochondrial swelling and decreased electron transport chain activity. In the present work, we analyzed the potentially toxic effects of DAQ on mitochondria and, specifically, on the NADH and GSH pools. Our results demonstrate that the generation of DAQ in isolated respiring mitochondria triggers the opening of the permeability transition pore most probably by inducing oxidation of NADH, while GSH levels are not affected. We then characterized in vitro, by UV and NMR spectroscopy, the reactivity of different DA-derived quinones, i.e., dopamine-o-quinone (DQ), aminochrome (AC) and indole-quinone (IQ), toward NADH and GSH. Our results indicate a very diverse reactivity for the different DAQ studied that may contribute to unravel the complex molecular mechanisms underlying oxidative stress and mitochondria dysfunction in the context of PD.


Metabolomics | 2012

An NMR-based metabolomic approach to identify the botanical origin of honey

Elisabetta Schievano; Matteo Stocchero; Elisa Morelato; Chiara Facchin; Stefano Mammi

NMR can be used in food analysis for origin discrimination and biomarker discovery using a metabolomic approach. Here, we present an example of this strategy to discriminate honey samples of different botanical origins. The NMR spectra of 353 chloroform extracts of selected honey samples were analyzed to detect possible markers of their floral origin. Six monofloral Italian honey types (acacia, linden, orange, eucalyptus, chestnut, and honeydew) were analyzed together with polyfloral samples. Specific markers were identified for each monofloral origin: two markers for acacia (chrysin and pinocembrin), one for chestnut (γ-LACT-3-PKA), two for orange (8-hydroxylinalool and caffeine), one for eucalyptus (dehydrovomifoliol), one for honeydew (a diacylglycerilether) and two for linden (4-(1-hydroxy-1-methylethyl)cyclohexa-1,3-diene-carboxylic acid and 4-(1-methylethenyl)cyclohexa-1,3-diene-carboxylic acid). An NMR-based metabolomic approach that used O2PLS-DA multivariate data analysis allowed us to discriminate the different types of honey. Two different classifiers were built based on different multivariate techniques. The high precision of the classification obtained suggests that this approach could be useful to develop generally applicable metabolomic tools to discriminate the origin of honey samples.

Collaboration


Dive into the Stefano Mammi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge