Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Agulló is active.

Publication


Featured researches published by Luis Agulló.


Cardiovascular Research | 2002

Effect of inhibition of Na+/Ca2+ exchanger at the time of myocardial reperfusion on hypercontracture and cell death

Javier Inserte; David Garcia-Dorado; Marisol Ruiz-Meana; Ferran Padilla; José A. Barrabés; Pilar Pina; Luis Agulló; Hans Michael Piper; Jordi Soler-Soler

OBJECTIVE There is recent evidence that Ca(2+) influx via reverse mode Na(+)/Ca(2+) exchange (NCX) at the time of reperfusion can contribute to cardiomyocyte hypercontracture. However, forward NCX is essential for normalization of [Ca(2+)](i) during reperfusion, and its inhibition may be detrimental. This study investigates the effect of NCX inhibition with KB-R7943 at the time of reperfusion on cell viability. METHODS The effect of several concentrations of KB-R7943 added at reperfusion was studied in Fura-2 loaded quiescent cardiomyocytes submitted to 40 min of simulated ischemia (NaCN 2 mM, pH 6.4), and in rat hearts submitted to 60 min of ischemia. [Ca(2+)](i) and cell length were monitored in myocytes, and functional recovery and LDH release in isolated hearts. From these experiments an optimal concentration of KB-R7943 was identified and tested in pigs submitted to 48 min of coronary occlusion and 2 h of reperfusion. RESULTS In myocytes, KB-R7943 at concentrations up to 15 microM reduced [Ca(2+)](i) rise and the probability of hypercontracture during re-energization (P<0.01). Nevertheless, in rat hearts, the effects of KB-R7943 applied during reperfusion after 60 min of ischemia depended on concentration and timing of administration. During the first 5 min of reperfusion, KB-R7943 (0.3-30 microM) induced a dose-dependent reduction in LDH release (half-response concentration 0.29 microM). Beyond 6 min of re-flow, KB-R7943 had no effect on LDH release, except at concentrations > or = 15 microM, which increased LDH. KB-R7943 at 5 microM given during the first 10 min of reflow reduced contractile dysfunction (P=0.011), LDH release (P=0.019) and contraction band necrosis (P=0.014) during reperfusion. Intracoronary administration of this concentration during the first 10 min of reperfusion reduced infarct size by 34% (P=0.033) in pigs submitted to 48 min of coronary occlusion. CONCLUSIONS These results are consistent with the hypothesis that during initial reperfusion NCX activity results in net reverse mode operation contributing to Ca(2+) overload, hypercontracture and cell death, and that NCX inhibition during this phase is beneficial. Beyond this phase, NCX inhibition may impair forward mode-dependent Ca(2+) extrusion and be detrimental. These findings may help in the design of therapeutic strategies against lethal reperfusion injury, with NCX as the target.


Biochemical and Biophysical Research Communications | 1992

Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in culture

Luis Agulló; Agustina García

The ability of various compounds to stimulate cyclic GMP accumulation was studied in neuronal and astrocyte-enriched primary cultures from rat cerebrum. Glutamate was the only agonist eliciting a response in neurons whereas several agonists had an effect in astrocytes but only those due to norepinephrine and glutamate were of considerable magnitude. The responses were markedly inhibited by the nitric oxide synthase inhibitor NG-monomethyl-L-arginine. The effect of glutamate appears to be mediated predominantly by NMDA receptors in neurons and by quisqualate AMPA-insensitive receptors in astrocytes.


Cardiovascular Research | 2001

Intravenous administration of the natriuretic peptide urodilatin at low doses during coronary reperfusion limits infarct size in anesthetized pigs

Ferran Padilla; David Garcia-Dorado; Luis Agulló; José A. Barrabés; Javier Inserte; Noelia Escalona; Markus Meyer; Maribel Mirabet; Pilar Pina; Jordi Soler-Soler

OBJECTIVE It has been shown that cGMP content is reduced in post-ischemic myocardium, and that stimulation of cGMP synthesis prevents cardiomyocyte hypercontracture and cell death in vitro. This study was aimed at determining whether administration of the natriuretic peptide urodilatin (URO) at the time of reperfusion could limit myocardial cell death secondary to transient coronary occlusion. METHODS The relation between cGMP content in reperfused myocardium and the extent of cell death was investigated in isolated rat hearts (n=62) receiving different URO concentrations during initial reperfusion. The dose of intravenous URO necessary to obtain the targeted increase in cGMP in reperfused myocardium was investigated in ten pigs submitted to transient coronary occlusion (CO), and the effect of two selected doses of URO on infarct size was investigated in 22 pigs. RESULTS cGMP was severely reduced in post-ischemic rat hearts. Addition of 0.01 microM URO during the first 15 min of reperfusion had no effect on myocardial cGMP content, functional recovery or LDH release in hearts submitted to 40 or 60 min of ischemia. At 0.05 microM, URO increased myocardial cGMP to 111% of values in normoxic hearts, improved functional recovery (P=0.01) and reduced peak LDH released by 40% (P=0.02). The beneficial effect of urodilatin was abolished by ANP receptor inhibition. At 1 microM, URO increased cGMP in reperfused myocardium to 363% of normoxic controls and had no beneficial effect. In pigs allocated to 47 min of CO and 5 min of reperfusion, cGMP was markedly reduced in reperfused myocardium. Intravenous URO at 10 ng/kg per min during the first 25 min of reperfusion normalized myocardial cGMP after 5 min of reflow (95% of control myocardium), and reduced infarct size by 40% (P=0.04). At 50 ng/kg per min, urodilatin increased myocardial cGMP in reperfused myocardium to 335% of control myocardium and failed to significantly reduce infarct size (46 vs. 66%, P=0.125). None of these doses had detectable hemodynamic effects. CONCLUSIONS Intravenous low-dose URO at the time of reperfusion normalizes myocardial cGMP and limits necrosis. Large doses of URO increasing myocardial cGMP well over normal values may lack this beneficial effect.


Cardiovascular Research | 2000

Urodilatin limits acute reperfusion injury in the isolated rat heart.

Javier Inserte; David Garcia-Dorado; Luis Agulló; Amaya Paniagua; Jordi Soler-Soler

OBJECTIVES Hypercontracture is an important mechanism of myocyte death during reperfusion. cGMP modulates the sensitivity of contractile myofilaments to Ca2+, and increasing cGMP concentration during the last minutes of anoxia prevents reoxygenation-induced hypercontracture in isolated cardiomyocytes. The purpose of this study was to determine whether stimulation of particulate guanylyl cyclase with the natriuretic peptide urodilatin, given at the time of reperfusion, reduces myocardial necrosis in the rat heart submitted to transient ischemia. METHODS Isolated rat hearts (n = 38) were submitted to either 40 or 60 min of no-flow ischemia and 2 h of reperfusion, and were allocated to receive or not receive 0.05 microM urodilatin during the first 15 min of reperfusion or non-reperfusion treatment. RESULTS A marked reduction in myocardial cGMP concentration was observed in control hearts during reperfusion after 40 or 60 min of ischemia. Urodilatin significantly attenuated cGMP depletion during initial reperfusion, markedly improved contractile recovery after 40 min of ischemia (P < 0.0309), and reduced reperfusion-induced increase in left ventricular end-diastolic pressure (P = 0.0139), LDH release (P = 0.0263), and contraction band necrosis (P = 0.0179) after 60 min of ischemia. The beneficial effect of urodilatin was reproduced by the membrane permeable cGMP analog 8-Bromo-cGMP. CONCLUSIONS These results indicate that reduced cGMP concentration may impair myocyte survival during reperfusion. Stimulation of particulate guanylyl cyclase may appear as a new strategy to prevent immediate lethal reperfusion injury.


Brain Research | 1995

Calcium-dependent nitric oxide formation in glial cells

Luis Agulló; María Antonia Baltrons; Agustina García

We have previously demonstrated nitric oxide (NO)-dependent cyclic GMP (cGMP) formation in response to noradrenaline (NA) and glutamate (GLU) in astrocyte-enriched cultures from rat cerebrum. In the present work we show heterogeneity in agonist responses in astrocyte cultures from cerebellum, hippocampus and cortex. The response to NA was higher in cells from cerebellum, intermediate in cultures from hippocampus and low in cortical astrocytes. GLU had no significant effect in cortical and cerebellar cultures and presented lower effects than NA in cells from hippocampus. The NO donor sodium nitroprusside (SNP) produced much higher cGMP levels than agonists and the order of efficacies was cerebellum > cortex > hippocampus. Responses to NA and SNP in cerebellar astrocytes were sensitive to culture conditions decreasing when cells were seeded at low density or subcultured. Microglial cells were the main contaminants of the cerebellar astrocyte cultures but did not contribute to the NA or the SNP responses. No soluble guanylyl cyclase or calcium-dependent NO synthase (cNOS) activities were detected in microglial cultures. The effect of NA in cerebellar astrocytes was blocked by L-arginine analogues and by the alpha 1-adrenoceptor antagonist prazosin. The calcium ionophore A23187 mimicked the effect of NA and omission of calcium from the medium prevented both responses. NA did not elicit cGMP formation in granule cell cultures. These results support an astroglial location of the alpha 1-adrenoceptors and the cNOS that mediate NA stimulation of cGMP formation in cerebellum.


European Journal of Pharmacology | 1991

Norepinephrine increases cyclic GMP in astrocytes by a mechanism dependent on nitric oxide synthesis

Luis Agulló; Agustina García

Norepinephrine induces a rapid and concentration-dependent rise (EC50 = 1.21 +/- 0.33 microM) in cyclic GMP levels in astrocyte-enriched cultures from rat brain. The response is partially mediated by alpha 1-adrenoceptors since a marked inhibition is observed in the presence of prazosin while the beta-antagonist propranolol shows a smaller effect and the alpha 2-antagonist yohimbine is ineffective. L-NG-methylarginine, an inhibitor of nitric oxide synthesis from L-arginine, blocks the norepinephrine-induced cyclic GMP accumulation. This effect is reversed by L-arginine.


Journal of Molecular and Cellular Cardiology | 2011

cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion

Javier Inserte; Ignasi Barba; Marcos Poncelas-Nozal; Victor Hernando; Luis Agulló; Marisol Ruiz-Meana; David Garcia-Dorado

Ischemic postconditioning has been demonstrated to limit infarct size in patients, but its molecular mechanisms remain incompletely understood. Low intracellular pH (pHi) inhibits mitochondrial permeability transition, calpain activation and hypercontracture. Recently, delayed normalization of pHi during reperfusion has been shown to play an important role in postconditioning protection, but its relation with intracellular protective signaling cascades is unknown. The present study investigates the relation between the rate of pHi normalization and the cGMP/PKG pathway in postconditioned myocardium. In isolated Sprague-Dawley rat hearts submitted to transient ischemia both, postconditioning and acidic reperfusion protocols resulted in a similar delay in pHi recovery measured by (31)P-NMR spectroscopy (3.6±0.2min and 3.5±0.2min respectively vs. 1.4±0.2min in control group, P<0.01) and caused equivalent cardioprotection (48% and 41% of infarct reduction respectively, P<0.01), but only postconditioning increased myocardial cGMP levels (P=0.02) and activated PKG. Blockade of cGMP/PKG pathway by the addition of the guanylyl cyclase inhibitor ODQ or the PKG inhibitor KT5823 during reperfusion accelerated pHi recovery and abolished cardioprotection in postconditioned hearts, but had no effect in hearts subjected to acidic reperfusion suggesting that PKG signaling was upstream of delayed pHi normalization in postconditioned hearts. In isolated cardiomyocytes the cGMP analog 8-pCPT-cGMP delayed Na(+)/H(+)-exchange mediated pHi normalization after acidification induced by a NH(4)Cl pulse. These results demonstrate that the cGMP/PKG pathway contributes to postconditioning protection at least in part by delaying normalization of pHi during reperfusion, probably via PKG-dependent inhibition of Na(+)/H(+)-exchanger.


Glia | 1996

Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes.

Maria Lourdes Arbonés; Joan Ribera; Luis Agulló; María Antonia Baltrons; Anna Casanovas; Valentina Riveros‐Moreno; Agustina García

We have previously reported that stimulation of astrocyte cultures by particular agonists and calcium ionophores induces cyclic GMP formation through activation of a constitutive nitric oxide synthase (NOS) and that astrocytes from cerebellum show the largest response. In the present work we have used rat cerebellar astrocyte‐enriched primary cultures to identify and characterise the isoform of NOS expressed in these cells. The specific NOS activity in astrocyte homogenates, determined by conversion of [3H]arginine to [3H]citrulline, was ten times lower than in homogenates from cerebellar granule neurons. Upon centrifugation at 100,000g, the astroglial activity was recovered in the supernatant, whereas in neurons around 30% of the activity remained particulate. The cytosolic NOS activities of both astrocytes and granule neurons displayed the same Km for L‐arginine, dependency of calcium, and sensitivity to NOS inhibitors. Expression of NOS‐I in astrocyte cytosolic fractions was revealed by Western blot with a specific polyclonal antiserum against recombinant NOS‐I. Double immunofluorescence labelling using anti‐glial fibrillary acidic protein (GFAP) and anti‐NOS‐I antibodies revealed that a minor population of the GFAP‐positive cells, usually in clusters, presented a strong NOS‐I immunostaining that was predominantly located around the nuclei and had a granular appearance, indicating association with the endoplasmic reticulum‐Golgi system. Astrocytes of stellate morphology also showed immunoreactivity in the processes. Similar staining was observed with the avidin‐biotin‐peroxidase complex using different anti‐NOS‐I antisera. With this method the majority of cells showed a weak NOS‐I immunoreactivity around the nuclei and cytosol. A similar pattern was observed with the NADPH‐diaphorase reaction. These results demonstrate that the NOS‐I expressed in astrocytes presents the same biochemical characteristics as the predominant neuronal isoform but may differ in intracellular location.


Thrombosis and Haemostasis | 2009

Myocardial protection against reperfusion injury: The cGMP pathway

David Garcia-Dorado; Luis Agulló; Carmem Sartorio; Marisol Ruiz-Meana

Reperfusion injury may cause myocardial cell death and limit the benefit achieved by restoration of coronary artery patency in patients with acute myocardial infarction. The mechanism includes altered Ca(2+) handling with cytosolic and mitochondrial Ca(2+) overload, Ca(2+)- and ATP-dependent hypercontraction, cytoskeletal fragility, mitochondrial permeability transition and gap junction-mediated propagation of cell death, as well as alterations in non-cardiomyocyte cells, in particular platelets and endothelial cells. cGMP modulates favorably all these mechanism, mainly through PKG-mediated actions, but cGMP synthesis is altered in reperfused cardiomyocytes and endothelial cells by mechanisms that are only partially understood. Stimulation of cGMP synthesis during initial reperfusion by means of natriuretic peptides has been found protective in different animal models and in patients. Moreover, increasing evidence indicates that cGMP is an important step in signal transduction of endogenous cardioprotection. Thus, the cGMP pathway appears as a key element in the pathophysiology of myocardial ischaemia-reperfusion and as a promising therapeutic target in patients with acute myocardial infarction.


Journal of Neuroscience Research | 1997

Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture.

María Antonia Baltrons; Samira Saadoun; Luis Agulló; Agustina García

Ca2+ entry induced by N‐methyl‐D‐aspartate (NMDA) in neurons and by noradrenaline (NA) in astrocytes is known to increase intracellular cyclic GMP (cGMP) levels through stimulation of the Ca2+‐dependent nitric oxide synthase type I (NOS‐I). The possibility that Ca2+ entry could also down‐regulate intracellular cGMP by activating a Ca2+/calmodulin‐dependent phosphodiesterase (CaM‐PDE) has been investigated here in primary cultures enriched in granule neurons or in astroglia from rat cerebellum. We show that the same agonists that stimulate nitric oxide (NO) formation (NMDA and NA at 100 μM) and the Ca2+ ionophore A23187 (10 μM) decrease cGMP generated in response to direct stimulation of soluble guanylyl cyclase (sGC) by NO donors in both cell types. This effect requires extracellular Ca2+ and is prevented by the calmodulin inhibitor W7 (100 μM). Membrane depolarization, manipulations of the Na+ gradient, and intracellular Ca2+ mobilization also decrease NO donor‐induced cGMP formation in granule cells. In astroglia Ca2+ entry additionally down‐regulates cGMP generated by stimulation of the particulate GC by atrial natriuretic peptide (ANF). Decreases in cGMP produced by A23187 were more pronounced in the absence than in the presence of the PDE inhibitor 3‐isobutyl‐1‐methylxanthine (IBMX; 1 mM), indicating that a CaM‐PDE was involved. We also show that astroglial cells can accumulate similar amounts of cGMP than neurons in response to NO donors when IBMX is present but much lower levels in its absence. This may result from a lower ratio of sGC to PDE activities in astroglia. J. Neurosci. Res. 49:333–341, 1997.

Collaboration


Dive into the Luis Agulló's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Inserte

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Soler-Soler

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

José A. Barrabés

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marisol Ruiz-Meana

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Agustina García

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ferran Padilla

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Antonio Rodríguez-Sinovas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jaume Figueras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge