Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Alberto Ponce-Soto is active.

Publication


Featured researches published by Luis Alberto Ponce-Soto.


Journal of Protein Chemistry | 2002

Isolation and Preliminary Enzymatic Characterization of a Novel PLA2 from Crotalus durissus collilineatus Venom

Luis Alberto Ponce-Soto; Marcos H. Toyama; Stephen Hyslop; J. C. Novello; Sergio Marangoni

A crotoxin homolog was purified from the Crotalus durissus collilineatus venom using molecular exclusion and reverse-phase HPLC. This crotoxin contained one PLA2 (Cdcolli III F6) and four crotapotin isoforms, whereas crotoxin from Crotalus durissus terrificus venom had three PLA2 isoforms and two crotapotin isoforms. SDS-PAGE showed that the C. d. collilineatus PLA2 and crotapotin had relative molecular mass of 15 and 9 kDa, respectively. Neither the PLA2 (Cdcolli III F6) nor the crotapotins (Cdcolli III F3 and F4) had any neurotoxicity in mouse phrenic nerve-diaphragm preparations when tested alone. However, when PLA2 and crotapotin were coincubated before testing, the neurotoxicity was restored to a level similar to test in the venom in native crotoxin. The two crotapotins (Cdcolli III F3 and F4) differed in their ability to inhibit PLA2 activity, perhaps because of variations in their affinities for this enzyme. Cdcolli III F6 showed allosteric enzymatic behavior, with maximal activity at pH 8.3 and 36°C. Full PLA2 activity required the presence of a low Ca2+ concentration and was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. These results indicate that crotoxin from C. d. collineatus venom is very similar enzymatically to crotoxin from C. d. terrificus.


Toxicon | 2008

Biological and biochemical characterization of new basic phospholipase A2 BmTX-I isolated from Bothrops moojeni snake venom☆

Andrana K. Calgarotto; Daniela C.S. Damico; Luis Alberto Ponce-Soto; Paulo A. Baldasso; Saulo L. da Silva; Gustavo H.M.F. Souza; Marcos N. Eberlin; Sergio Marangoni

BmTX-I, an Asp49 phospholipase A(2), was purified from Bothrops moojeni venom after only one chromatographic step using reverse-phase HPLC on mu-Bondapak C-18 column. A molecular mass of 14238.71Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BmTX-I PLA(2) had a sequence of 121 residues of amino acids: DLWQFNKMIK KEVGKLPFPF YGAYGCYCGW GGRGEKPKDG TDRCCFVHDC CYKKLTGCPK WDDRYSYSWK DITIVCGEDL PCEEICECDR AAAVCFYENL GTYNKKYMKH LKPCKKADYP C and pI value 7.84, and showed a high degree of homology with basic Asp49 PLA(2) myotoxins from other Bothrops venoms. BmTX-I presented PLA(2) activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35-45 degrees C. Maximum PLA(2) activity required Ca(2+) and in the presence of Mg(2+), Cd(2+) and Mn(2+) it was reduced in presence or absence of Ca(2+). Crotapotin from Crotalus durissus colillineatus rattlesnake venom has significantly inhibited (P<0.05) the enzymatic activity of BmTX-I. In vitro, the whole venom and BmTX-I caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other bothrops species. In mice, BmTX-I and the whole venom-induced myonecrosis and a systemic interleukin-6 response upon intramuscular injection. Edema-forming activity was also analyzed through injection of the venom and the purified BmTX-I into the subplantar region of the right footpad. Since BmTX-I exert a strong proinflammatory effect; the enzymatic phospholipids hydrolysis might be relevant for these phenomena.


Toxicon | 2010

Isolation and characterization of a new serine protease with thrombin-like activity (TLBm) from the venom of the snake Bothrops marajoensis.

Augusto Vilca-Quispe; Luis Alberto Ponce-Soto; Flavia Vischi Winck; Sergio Marangoni

The thrombin-like serine protease TLBm from Bothrops marajoensis was isolated in one chromatographic step in reverse phase HPLC. Its molecular mass was 33239.95 Da, as based on the determined primary structure and confirmed experimentally by MALDI-TOF mass spectrometry (33332.5 Da) and it contains 12 half-cysteine residues. This TLBm exhibited high specificity for BArhoNA, Michaelis-Menten behavior with K(m) 2.3x10(-1)M and the V(max) 0.52x10(-1) nmoles rho-NA/lt/min for this substrate. TLBm also showed ability to coagulate bovine fibrinogen and was inhibited by soybean trypsin inhibitor, EDTA and S(Dm) from the serum of the species Didelphis marsupialis. The primary structure of TLBm showed the presence of His(45), Asp(103) and Ser(228) residues in the corresponding positions of the catalytic triad established in the serine proteases and Ser(228) are inhibited by phenylmethylsulfonyl fluoride (PMSF). Amino acid analysis showed a high content of Asp, Glu, Gly, Ser, Ala and Pro as well as 12 half-cysteine residues and calculated pI of 6.47; TLBm presented 285 amino acid residues. In this work, we investigated the ability of TLBm to degrade fibrinogen and we observed that it is able to cause alpha- and beta-chain cleavage. Enzymatic as well as the platelet aggregation activities were strongly inhibited when incubated with PMSF, a specific inhibitor of serine protease. Also, TLBm induced platelet aggregation in washed and platelet-rich plasma, and in both cases, PMSF inhibited its activity.


Toxicon | 2012

Synergism between baltergin metalloproteinase and Ba SPII RP4 PLA2 from Bothrops alternatus venom on skeletal muscle (C2C12) cells

Soledad Bustillo; María E. Garcia Denegri; Luis Alberto Ponce-Soto; Elisa Bal de Kier Joffé; Ofelia Acosta; Laura C. Leiva

Acute muscle damage, myonecrosis, is one of the main characteristics of envenoming by Bothrops genus. In this in vitro study we investigated the role of a metalloproteinase (baltergin) and an acidic phospholipase A2 (Ba SPII RP4) in the cytotoxicity exhibited by Bothrops alternatus venom. Baltergin metalloproteinase purified from the venom exerted a toxic effect on C2C12 myoblast cells (CC50: 583.34 μg/mL) which involved morphological alterations compatible with apoptosis/anoikis. On the contrary, the most abundant PLA2 isolated from this venom did not exhibit cytotoxicity at times and doses tested. However, when myoblasts were treated with both enzymes together, synergic activity was demonstrated. Neutralization of the venom with specific antibodies (IgG anti-baltergin and IgG anti-PLA2) confirmed this synergism.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010

Biological and biochemical characterization of two new PLA2 isoforms Cdc-9 and Cdc-10 from Crotalus durissus cumanensis snake venom.

Frey Francisco Romero-Vargas; Luis Alberto Ponce-Soto; Daniel Martins-de-Souza; Sergio Marangoni

This work reports the purification, biological characterization and amino acid sequence of two new basic PLA(2) isoforms, Cdc-9 and Cdc-10, purified from the Crotalus durissus cumanensis venom by one step analytical chromatography reverse phase HPLC. The molecular masses of the PLA(2) were 14,175+/-2.7 Da for Cdc-9 and 14,228+/-3.5 Da for Cdc-10 both deduced by primary structure and confirmed by MALDI-TOF. The isoforms presented an amino acid sequence of 122 amino acid residues, being Cdc-9: SLVQFNKMIK FETRKSGLPF YAAYGCYCGW GGQRPKDATD RCCFVHDCCY GKVAKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLS TYKNEYMFYP DSRCREPPEY TC with pI value of 8.25 and Cdc-10: SLLQFNKMIK FETRKSGVPF YAAYGCYCGW GGRRPKDPTD RCCFVHDCCY GKLTKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLN TYKNEYMFYP DSRCRGPPEY TC with a pI value of 8.46, showing highly conserved Ca(2+)-binding and catalytic sites. The PLA(2) activity decreased when the isoforms Cdc-9 and Cdc-10 were incubated with 4-bromophenacyl bromide (p-BPB), anhydrous acetic acid and p-nitrobenzene sulfonyl fluoride (NBSF) when compared with the activity of both native isoforms. In mice, the PLA(2) isoforms Cdc-9 and Cdc-10 induced myonecrosis and edema. Myotoxic and edema activities were reduced after treatment of the isoforms with p-BPB; acetylation of the lysine residues and the treatment of PLA(2) with NBSF have also induced edema reduction. However, p-BPB strongly diminishes the local and systemic myotoxic effects.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Neuromuscular activity of BaTX, a presynaptic basic PLA2 isolated from Bothrops alternatus snake venom.

Luis Alberto Ponce-Soto; J.C. Barros; Sergio Marangoni; S. Hernandez; C.A. Dal Belo; A.P. Corrado; Stephen Hyslop; Léa Rodrigues-Simioni

We have previously isolated a Lys49 phospholipase A(2) homolog (BaTX) from Bothrops alternatus snake venom using a combination of molecular exclusion chromatography and reverse phase HPLC and shown its ability to cause neuromuscular blockade. In this work, we describe a one-step procedure for the purification of this toxin and provide further details of its neuromuscular activity. The toxin was purified by reverse phase HPLC and its purity and molecular mass were confirmed by SDS-PAGE, MALDI-TOF mass spectrometry, amino acid analysis and N-terminal sequencing. BaTX (0.007-1.4 microM) produced time-dependent, irreversible neuromuscular blockade in isolated mouse phrenic nerve-diaphragm and chick biventer cervicis preparations (time to 50% blockade with 0.35 microM toxin: 58+/-4 and 24+/-1 min, respectively; n=3-8; mean+/-S.E.) without significantly affecting the response to direct muscle stimulation. In chick preparations, contractures to exogenous acetylcholine (55 and 110 microM) or KCl (13.4 mM) were unaltered after complete blockade by all toxin concentrations. These results, which strongly suggested a presynaptic mechanism of action for this toxin, were reinforced by (1) the inability of BaTX to interfere with the carbachol-induced depolarization of the resting membrane, (2) a significant decrease in the frequency and amplitude of miniature end-plate potentials, and (3) a significant reduction (59+/-4%, n=12) in the quantal content of the end-plate potentials after a 60 min incubation with the toxin (1.4 microM). In addition, a decrease in the organ bath temperature from 37 degrees C to 24 degrees C and/or the replacement of calcium with strontium prevented the neuromuscular blockade, indicating a temperature-dependent effect possibly mediated by enzymatic activity.


Toxicon | 2013

Pharmacological study of a new Asp49 phospholipase A(2) (Bbil-TX) isolated from Bothriopsis bilineata smargadina (forest viper) venom in vertebrate neuromuscular preparations.

Rafael Stuani Floriano; Victor Corasolla Carregari; Valdemir Aparecido de Abreu; Bruno Kenzo-Kagawa; Luis Alberto Ponce-Soto; Maria Alice da Cruz-Höfling; Stephen Hyslop; Sergio Marangoni; Léa Rodrigues-Simioni

The neuromuscular activity of Bbil-TX, a PLA2 with catalytic activity isolated from Bothriopsis bilineata smargadina venom, was examined in chick biventer cervicis (BC) and mouse phrenic nerve-diaphragm (PND) preparations. In BC preparations, Bbil-TX (0.5-10 μg/ml) caused time- and concentration-dependent blockade that was not reversed by washing; the times for 50% blockade were 87 ± 7, 41 ± 7 and 19 ± 2 min (mean ± SEM; n = 4-6) for 1, 5 and 10 μg/ml, respectively. Muscle contractures to exogenous ACh and KCl were unaffected. The toxin (10 μg/ml) also did not affect the twitch-tension of directly-stimulated, curarized (10 μg/ml) BC preparations. However, Bbil-TX (10 μg/ml) produced mild morphological alterations (edematous and/or hyperchromic fibers) in BC; there was also a progressive release of CK (from 116 ± 17 IU/ml (basal) to 710 ± 91 IU/ml after 45 min). Bbil-TX (5 μg/ml)-induced blockade was markedly inhibited at 22-24 °C and pretreatment with p-bromophenacyl bromide (p-BPB) abolished the neuromuscular blockade. Bbil-TX (3-30 μg/ml, n = 4-6) caused partial time- and concentration-dependent blockade in PND preparations (52 ± 2% at the highest concentration). Bbil-TX (30 μg/ml) also markedly reduced the MEPPs frequency [from 26 ± 2.5 (basal) to 10 ± 1 after 60 min; n = 5; p < 0.05] and the quantal content [from 94 ± 14 (basal) to 24 ± 3 after 60 min; n = 5; p < 0.05] of PND preparations, but caused only minor depolarization of the membrane resting potential [from -80 ± 1 mV (basal) to -66 ± 2 mV after 120 min; n = 5; p < 0.05], with no significant change in the depolarizing response to exogenous carbachol. These results show that Bbil-TX is a presynaptic PLA2 that contributes to the neuromuscular blockade caused by B. b. smargadina venom.


Biochimica et Biophysica Acta | 2013

Structural bases for a complete myotoxic mechanism: Crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom.

Carlos A.H. Fernandes; Edson J. Comparetti; Rafael J. Borges; Salomón Huancahuire-Vega; Luis Alberto Ponce-Soto; Sergio Marangoni; Andreimar M. Soares; Marcos R.M. Fontes

Bothrops brazili is a snake found in the forests of the Amazonian region whose commercial therapeutic anti-bothropic serum has low efficacy for local myotoxic effects, resulting in an important public health problem in this area. Catalytically inactive phospholipases A2-like (Lys49-PLA2s) are among the main components from Bothrops genus venoms and are capable of causing drastic myonecrosis. Several studies have shown that the C-terminal region of these toxins, which includes a variable combination of positively charged and hydrophobic residues, is responsible for their activity. In this work we describe the crystal structures of two Lys49-PLA2s (BbTX-II and MTX-II) from B. brazili venom and a comprehensive structural comparison with several Lys49-PLA2s. Based on these results, two independent sites of interaction were identified between protein and membrane which leads to the proposition of a new myotoxic mechanism for bothropic Lys49-PLA2s composed of five different steps. This proposition is able to fully explain the action of these toxins and may be useful to develop efficient inhibitors to complement the conventional antivenom administration.


BioMed Research International | 2013

Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom.

Victor Corasolla Carregari; Rafael Stuani Floriano; Léa Rodrigues-Simioni; Flavia Vischi Winck; Paulo A. Baldasso; Luis Alberto Ponce-Soto; Sergio Marangoni

Bbil-TX, a PLA2, was purified from Bothriopsis bilineata snake venom after only one chromatographic step using RP-HPLC on μ-Bondapak C-18 column. A molecular mass of 14243.8 Da was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry. The partial protein sequence obtained was then submitted to BLASTp, with the search restricted to PLA2 from snakes and shows high identity values when compared to other PLA2s. PLA2 activity was presented in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 25–37°C. Maximum PLA2 activity required Ca2+ and in the presence of Cd2+, Zn2+, Mn2+, and Mg2+ it was reduced in the presence or absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom and antihemorrhagic factor DA2-II from Didelphis albiventris opossum sera under optimal conditions significantly inhibit the enzymatic activity. Bbil-TX induces myonecrosis in mice. The fraction does not show a significant cytotoxic activity in myotubes and myoblasts (C2C12). The inflammatory events induced in the serum of mice by Bbil-TX isolated from Bothriopsis bilineata snake venom were investigated. An increase in vascular permeability and in the levels of TNF-a, IL-6, and IL-1 was was induced. Since Bbil-TX exerts a stronger proinflammatory effect, the phospholipid hydrolysis may be relevant for these phenomena.


Toxicon | 2009

Structural and functional characterization of brazilitoxins II and III (BbTX-II and -III), two myotoxins from the venom of Bothrops brazili snake

Salomón Huancahuire-Vega; Luis Alberto Ponce-Soto; Daniel Martins-de-Souza; Sergio Marangoni

We report the purification and biochemical/pharmacological characterization of two myotoxic PLA(2) (BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2)) from Bothrops brazili venom. Both were purified by a single chromatographic step on reverse phase HPLC, showing M(r) approximately 14 kDa for both myotoxins, showing high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2), had a sequence of 121 amino acid residues. BbTX-II: [amino acid sequence: see text] with pI value 8.73. BbTX-III: [amino acid sequence: see text] with a pI value of 8.46. BbTX-III presented PLA(2) activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35-45 degrees C. Maximum PLA(2) activity required Ca(2+). In vitro, BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2) caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other Bothrops species. In mice, BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2) induces myonecrosis and edema-forming activity. All these biological effects induced by the BbTX-II K49 PLA(2) homologue, occur in the absence of a measurable PLA(2) activity in vitro, further supporting the concept of catalytic independent mechanisms exerted by Lys49 proteins.

Collaboration


Dive into the Luis Alberto Ponce-Soto's collaboration.

Top Co-Authors

Avatar

Sergio Marangoni

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thalita Rocha

Universidade São Francisco

View shared research outputs
Top Co-Authors

Avatar

V. L. Bonfim

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Bruno Lomonte

University of Costa Rica

View shared research outputs
Top Co-Authors

Avatar

José C. Novello

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Daniela C.S. Damico

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge