Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Salomón Huancahuire-Vega is active.

Publication


Featured researches published by Salomón Huancahuire-Vega.


Biochimica et Biophysica Acta | 2013

Structural bases for a complete myotoxic mechanism: Crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom.

Carlos A.H. Fernandes; Edson J. Comparetti; Rafael J. Borges; Salomón Huancahuire-Vega; Luis Alberto Ponce-Soto; Sergio Marangoni; Andreimar M. Soares; Marcos R.M. Fontes

Bothrops brazili is a snake found in the forests of the Amazonian region whose commercial therapeutic anti-bothropic serum has low efficacy for local myotoxic effects, resulting in an important public health problem in this area. Catalytically inactive phospholipases A2-like (Lys49-PLA2s) are among the main components from Bothrops genus venoms and are capable of causing drastic myonecrosis. Several studies have shown that the C-terminal region of these toxins, which includes a variable combination of positively charged and hydrophobic residues, is responsible for their activity. In this work we describe the crystal structures of two Lys49-PLA2s (BbTX-II and MTX-II) from B. brazili venom and a comprehensive structural comparison with several Lys49-PLA2s. Based on these results, two independent sites of interaction were identified between protein and membrane which leads to the proposition of a new myotoxic mechanism for bothropic Lys49-PLA2s composed of five different steps. This proposition is able to fully explain the action of these toxins and may be useful to develop efficient inhibitors to complement the conventional antivenom administration.


Toxicon | 2009

Structural and functional characterization of brazilitoxins II and III (BbTX-II and -III), two myotoxins from the venom of Bothrops brazili snake

Salomón Huancahuire-Vega; Luis Alberto Ponce-Soto; Daniel Martins-de-Souza; Sergio Marangoni

We report the purification and biochemical/pharmacological characterization of two myotoxic PLA(2) (BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2)) from Bothrops brazili venom. Both were purified by a single chromatographic step on reverse phase HPLC, showing M(r) approximately 14 kDa for both myotoxins, showing high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2), had a sequence of 121 amino acid residues. BbTX-II: [amino acid sequence: see text] with pI value 8.73. BbTX-III: [amino acid sequence: see text] with a pI value of 8.46. BbTX-III presented PLA(2) activity in the presence of a synthetic substrate and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0 and 35-45 degrees C. Maximum PLA(2) activity required Ca(2+). In vitro, BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2) caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other Bothrops species. In mice, BbTX-II K49 PLA(2) homologue and BbTX-III PLA(2) induces myonecrosis and edema-forming activity. All these biological effects induced by the BbTX-II K49 PLA(2) homologue, occur in the absence of a measurable PLA(2) activity in vitro, further supporting the concept of catalytic independent mechanisms exerted by Lys49 proteins.


Toxins | 2014

PhTX-II a Basic Myotoxic Phospholipase A2 from Porthidium hyoprora Snake Venom, Pharmacological Characterization and Amino Acid Sequence by Mass Spectrometry

Salomón Huancahuire-Vega; Luis Alberto Ponce-Soto; Sergio Marangoni

A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom.


BioMed Research International | 2013

Chemical Modifications of PhTX-I Myotoxin from Porthidium hyoprora Snake Venom: Effects on Structural, Enzymatic, and Pharmacological Properties

Salomón Huancahuire-Vega; Daniel Henrique do Amaral Corrêa; Luciana Maria de Hollanda; Marcelo Lancellotti; Carlos H.I. Ramos; Luis Alberto Ponce-Soto; Sergio Marangoni

We recently described the isolation of a basic PLA2 (PhTX-I) from Porthidium hyoprora snake venom. This toxin exhibits high catalytic activity, induces in vivo myotoxicity, moderates footpad edema, and causes in vitro neuromuscular blockade. Here, we describe the chemical modifications of specific amino acid residues (His, Tyr, Lys, and Trp), performed in PhTX-I, to study their effects on the structural, enzymatic, and pharmacological properties of this myotoxin. After chemical treatment, a single His, 4 Tyr, 7 Lys, and one Trp residues were modified. The secondary structure of the protein remained unchanged as measured by circular dichroism; however other results indicated the critical role played by Lys and Tyr residues in myotoxic, neurotoxic activities and mainly in the cytotoxicity displayed by PhTX-I. His residue and therefore catalytic activity of PhTX-I are relevant for edematogenic, neurotoxic, and myotoxic effects, but not for its cytotoxic activity. This dissociation observed between enzymatic activity and some pharmacological effects suggests that other molecular regions distinct from the catalytic site may also play a role in the toxic activities exerted by this myotoxin. Our observations supported the hypothesis that both the catalytic sites as the hypothetical pharmacological sites are relevant to the pharmacological profile of PhTX-I.


Toxicology Letters | 2015

P9a(Cdt-PLA2) from Crotalus durissus terrificus as good immunogen to be employed in the production of crotalic anti-PLA2 IgG

Luciano S. Fusco; Juan Pablo Rodríguez; Frank Denis Torres-Huaco; Salomón Huancahuire-Vega; Pamela Teibler; Ofelia Acosta; Sergio Marangoni; Luis Alberto Ponce-Soto; Laura C. Leiva

Four proteins with phospholipase A2 (PLA2) activity, designated P9a(Cdt-PLA2), P9b(Cdt-PLA2), P10a(Cdt-PLA2) and P10b(Cdt-PLA2) were purified from the venom of Crotalus durissus terrificus by two chromatographic steps: a gel filtration and reversed phase HPLC. The profile obtained clearly shows that three of them have a similar abundance. The molecular mass, 14193.8340Da for P9a(Cdt-PLA2), 14134.9102Da for P9b(Cdt-PLA2), 14242.6289Da for P10a(Cdt-PLA2) and 14183.8730Da for P10b(Cdt-PLA2), were initially evaluated by SDS-PAGE and confirmed by ESI-Q-TOF spectrometry, and all of them displayed a monomeric conformation. Also, partial amino acid sequence of each protein was obtained and their alignments with other crotalic PLA2 revealed a high degree of identity among them. Additionally, we studied some pharmacological activities like neurotoxicity, myotoxicity and lethality, which prompted us to pick two of them, P9a(Cdt-PLA2) and P10a(Cdt-PLA2) that resulted to be less toxic that the others, and further characterize them to be used as immunogen. We next injected these last proteins in mice to produce antitoxins against them and ELISA and dot blots reveled that both toxins do not show immunogenic differences, unlike those other pharmacologic activities tested. Furthermore, the antibodies produced cross-reacted with all the isoforms purified demonstrating the feasibility of using only one of them and ensuring the cross-reaction of all. The results obtained show that P9a(Cdt-PLA2) isoform has the lowest toxicity and also a good purification performance; thus this protein may be a promising candidate to be employed in the production of crotalic antitoxins.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2012

Crystallization and preliminary X-ray diffraction analysis of three myotoxic phospholipases A2 from Bothrops brazili venom.

Carlos A.H. Fernandes; Elaine C. G. Gartuzo; Ivan Pagotto; Edson J. Comparetti; Salomón Huancahuire-Vega; Luis Alberto Ponce-Soto; Tássia R. Costa; Sergio Marangoni; Andreimar M. Soares; Marcos R.M. Fontes

Two myotoxic and noncatalytic Lys49-phospholipases A(2) (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A(2) (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56-2.05 Å and belonged to space groups P3(1)21 (braziliantoxin-II), P6(5)22 (braziliantoxin-III) and P2(1) (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A(2) (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A(2) braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A(2).


Brazilian Journal of Medical and Biological Research | 2010

cDNA and deduced primary structure of basic phospholipase A2 with neurotoxic activity from the venom secretion of the Crotalus durissus collilineatus rattlesnake

F.H.R. Fagundes; M. Oliveira; Salomón Huancahuire-Vega; Frey Francisco Romero-Vargas; Luis Alberto Ponce-Soto; Sergio Marangoni

To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New Worlds N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.


Journal of Toxins | 2013

Biochemical and Pharmacological Characterization of TLBbar, a New Serine Protease with Coagulant Activity from Bothrops barnetti Snake Venom

Magaly Alejandra Brousett-Minaya; Paulo A. Baldasso; Salomón Huancahuire-Vega; Sergio Marangoni

A thrombin-like enzyme named TLBbar was isolated from Bothrops barnetti snake venom and its biochemical and pharmacological characteristics were determined. TLBbar was purified using size exclusion chromatography and reverse phase HPLC, showing molecular mass of 28750.7 Da determined by mass spectrometry. TLBbar serine protease is basic (pI 7.4) and its structure shows similarity with other serine proteases of snake venom. Optimal proteolytic activity was at 37°C and pH 8; this activity was strongly inhibited by PMSF and Leupeptin, however; heparin, and soybean trypsin inhibitor (SBT-I) were ineffective. Kinetic studies on BApNA chromogenic substrate have revealed that TLBbar presents a Michaelis-Menten kinetics, with values of and of 0.433 mM and 0.42 nmol/min, respectively. TLBbar showed high clotting activity upon bovine and human plasma, presenting IC of 125 and minimum dose coagulant (MDC) of 2.23 μg/μL. TLBbar cleavages the Aα chain of bovine fibrinogen, with maximal efficiency at 30–40°C in the presence of calcium after two hours incubation; this fibronogenolityc activity was inhibited by PMSF and Leupeptin, confirming its classification in the group of serine proteases. In addition, TLBbar is capable of aggregating platelets in the same way that thrombin in concentrations of 2.5 μg/μL.


Toxicon | 2010

Isolation and functional characterization of a new acidic PLA2 Ba SpII RP4 of the Bothrops alternatus snake venom from Argentina

María E. Garcia Denegri; Ofelia Acosta; Salomón Huancahuire-Vega; Daniel Martins-de-Souza; Sergio Marangoni; Silvana Maruñak; Gladys P. Teibler; Laura C. Leiva; Luis Alberto Ponce-Soto


Toxicon | 2009

Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis

Jaime Andrés Pereañez; Vitelbina Núñez; Salomón Huancahuire-Vega; Sergio Marangoni; Luis Alberto Ponce-Soto

Collaboration


Dive into the Salomón Huancahuire-Vega's collaboration.

Top Co-Authors

Avatar

Sergio Marangoni

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreimar M. Soares

Universidade Federal de Rondônia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos H.I. Ramos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.H.R. Fagundes

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge