Luis E. Florencio-Martínez
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis E. Florencio-Martínez.
BioMed Research International | 2010
Santiago Martínez-Calvillo; Juan C. Vizuet-de-Rueda; Luis E. Florencio-Martínez; Rebeca Manning-Cela; Elisa Figueroa-Angulo
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
BMC Genomics | 2009
Norma E. Padilla-Mejía; Luis E. Florencio-Martínez; Elisa Figueroa-Angulo; Rebeca Manning-Cela; Rosaura Hernández-Rivas; Peter J. Myler; Santiago Martínez-Calvillo
BackgroundThe protozoan pathogens Leishmania major, Trypanosoma brucei and Trypanosoma cruzi (the Tritryps) are parasites that produce devastating human diseases. These organisms show very unusual mechanisms of gene expression, such as polycistronic transcription. We are interested in the study of tRNA genes, which are transcribed by RNA polymerase III (Pol III). To analyze the sequences and genomic organization of tRNA genes and other Pol III-transcribed genes, we have performed an in silico analysis of the Tritryps genome sequences.ResultsOur analysis indicated the presence of 83, 66 and 120 genes in L. major, T. brucei and T. cruzi, respectively. These numbers include several previously unannotated selenocysteine (Sec) tRNA genes. Most tRNA genes are organized into clusters of 2 to 10 genes that may contain other Pol III-transcribed genes. The distribution of genes in the L. major genome does not seem to be totally random, like in most organisms. While the majority of the tRNA clusters do not show synteny (conservation of gene order) between the Tritryps, a cluster of 13 Pol III genes that is highly syntenic was identified. We have determined consensus sequences for the putative promoter regions (Boxes A and B) of the Tritryps tRNA genes, and specific changes were found in tRNA-Sec genes. Analysis of transcription termination signals of the tRNAs (clusters of Ts) showed differences between T. cruzi and the other two species. We have also identified several tRNA isodecoder genes (having the same anticodon, but different sequences elsewhere in the tRNA body) in the Tritryps.ConclusionA low number of tRNA genes is present in Tritryps. The overall weak synteny that they show indicates a reduced importance of genome location of Pol III genes compared to protein-coding genes. The fact that some of the differences between isodecoder genes occur in the internal promoter elements suggests that differential control of the expression of some isoacceptor tRNA genes in Tritryps is possible. The special characteristics found in Boxes A and B from tRNA-Sec genes from Tritryps indicate that the mechanisms that regulate their transcription might be different from those of other tRNA genes.
BioMed Research International | 2010
L. A. Hernández-Osorio; Claudia Márquez-Dueñas; Luis E. Florencio-Martínez; Gilberto Ballesteros-Rodea; Santiago Martínez-Calvillo; Rebeca Manning-Cela
Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis.
Experimental Parasitology | 2010
Luis E. Florencio-Martínez; Claudia Márquez-Dueñas; Gilberto Ballesteros-Rodea; Santiago Martínez-Calvillo; Rebeca Manning-Cela
Trypanosoma cruzi is an obligate intracellular parasite that infects phagocytic and non-phagocytic mammalian cells by a complex process that appears to involve several discrete steps. Even though the infection process was described many years ago, the molecular mechanisms involved remain poorly understood. As fluorescent proteins have proven to be excellent tools for live-cell imaging, we used EGFP- and DsRed1-1-transfected trypomastigotes, amastigotes and epimastigotes to study the infection process in living cells. Contrary to what has been reported, our results showed that epimastigotes are as infective as trypomastigotes and amastigotes. Besides, differences in replication, differentiation and parasite release times were observed among the stages. Our results suggest that the different developmental stages use distinct attachment and invasion mechanisms. We propose that fluorescent-based plasmid expression systems are good models for studying the infection process of intracellular microorganisms and could offers insights about the molecular mechanisms involved.
Parasitology | 2015
Daniel E. Vélez-Ramírez; Luis E. Florencio-Martínez; Gabriela Romero-Meza; Saúl Rojas-Sánchez; Rodrigo Moreno-Campos; R. Arroyo; J. Ortega-López; Rebeca Manning-Cela; Santiago Martínez-Calvillo
RNA polymerase III (Pol III) synthesizes small RNA molecules that are essential for cell viability. Accurate initiation of transcription by Pol III requires general transcription factor TFIIIB, which is composed of three subunits: TFIIB-related factor BRF1, TATA-binding protein and BDP1. Here we report the molecular characterization of BRF1 in Trypanosoma brucei (TbBRF1), a parasitic protozoa that shows distinctive transcription characteristics. In silico analysis allowed the detection in TbBRF1 of the three conserved domains located in the N-terminal region of all BRF1 orthologues, namely a zinc ribbon motif and two cyclin repeats. Homology modelling suggested that, similarly to other BRF1 and TFIIB proteins, the TbBRF1 cyclin repeats show the characteristic structure of five α-helices per repeat, connected by a short random-coiled linker. As expected for a transcription factor, TbBRF1 was localized in the nucleus. Knock-down of TbBRF1 by RNA interference (RNAi) showed that this protein is essential for the viability of procyclic forms of T. brucei, since ablation of TbBRF1 led to growth arrest of the parasites. Nuclear run-on and quantitative real-time PCR analyses demonstrated that transcription of all the Pol III-dependent genes analysed was reduced, at different levels, after RNAi induction.
Eukaryotic Cell | 2015
Norma E. Padilla-Mejía; Luis E. Florencio-Martínez; Rodrigo Moreno-Campos; Juan C. Vizuet-de-Rueda; Ana María Cevallos; Rosaura Hernández-Rivas; Rebeca Manning-Cela; Santiago Martínez-Calvillo
ABSTRACT Eukaryotic tRNAs, transcribed by RNA polymerase III (Pol III), contain boxes A and B as internal promoter elements. One exception is the selenocysteine (Sec) tRNA (tRNA-Sec), whose transcription is directed by an internal box B and three extragenic sequences in vertebrates. Here we report on the transcriptional analysis of the tRNA-Sec gene in the protozoan parasite Leishmania major. This organism has unusual mechanisms of gene expression, including Pol II polycistronic transcription and maturation of mRNAs by trans splicing, a process that attaches a 39-nucleotide miniexon to the 5′ end of all the mRNAs. In L. major, tRNA-Sec is encoded by a single gene inserted into a Pol II polycistronic unit, in contrast to most tRNAs, which are clustered at the boundaries of polycistronic units. 5′ rapid amplification of cDNA ends and reverse transcription-PCR experiments showed that some tRNA-Sec transcripts contain the miniexon at the 5′ end and a poly(A) tail at the 3′ end, indicating that the tRNA-Sec gene is polycistronically transcribed by Pol II and processed by trans splicing and polyadenylation, as was recently reported for the tRNA-Sec genes in the related parasite Trypanosoma brucei. However, nuclear run-on assays with RNA polymerase inhibitors and with cells that were previously UV irradiated showed that the tRNA-Sec gene in L. major is also transcribed by Pol III. Thus, our results indicate that RNA polymerase specificity in Leishmania is not absolute in vivo, as has recently been found in other eukaryotes.
Molecular Microbiology | 2017
Gabriela Romero-Meza; Daniel E. Vélez-Ramírez; Luis E. Florencio-Martínez; Fiordaliso C. Román-Carraro; Rebeca Manning-Cela; Rosaura Hernández-Rivas; Santiago Martínez-Calvillo
RNA polymerase III (Pol III) produces small RNA molecules that play essential roles in mRNA processing and translation. Maf1, originally described as a negative regulator of Pol III transcription, has been studied from yeast to human. Here we characterized Maf1 in the parasitic protozoa Trypanosoma brucei (TbMaf1), representing the first report to analyse Maf1 in an early‐diverged eukaryote. While Maf1 is generally encoded by a single‐copy gene, the T. brucei genome contains two almost identical TbMaf1 genes. The TbMaf1 protein has the three conserved sequences and is predicted to fold into a globular structure. Unlike in yeast, TbMaf1 localizes to the nucleus in procyclic forms of T. brucei under normal growth conditions. Cell lines that either downregulate or overexpress TbMaf1 were generated, and growth curve analysis with them suggested that TbMaf1 participates in the regulation of cell growth of T. brucei. Nuclear run‐on and chromatin immunoprecipitation analyses demonstrated that TbMaf1 represses Pol III transcription of tRNA and U2 snRNA genes by associating with their promoters. Interestingly, 5S rRNA levels do not change after TbMaf1 ablation or overexpression. Notably, our data also revealed that TbMaf1 regulates Pol I transcription of procyclin gene and Pol II transcription of SL RNA genes.
Protist | 2016
Juan C. Vizuet-de-Rueda; Luis E. Florencio-Martínez; Norma E. Padilla-Mejía; Rebeca Manning-Cela; Rosaura Hernández-Rivas; Santiago Martínez-Calvillo
Little is known about nucleosome structure and epigenetic regulation of transcription of rRNA genes in early-branched eukaryotes. Here we analyze the chromatin architecture and distribution of some histone modifications in the rRNA genes in the parasitic protozoon Leishmania major. Southern blots of MNase-partially-digested chromatin with DNA probes spanning the whole rRNA gene repeat showed that the intergenic spacer presents a tight nucleosomal structure, whereas the promoter region is practically devoid of nucleosomes. Intermediate levels of nucleosomes were found in the rRNA coding regions. ChIP assays allowed us to determine that H3K14ac, H3K23ac and H3K27ac, epigenetics marks that are generally associated with activation of transcription, are enriched in the promoter region. In contrast, H4K20me3, which is generally related to transcriptional silencing, was absent from the promoter region and intergenic spacer and enriched in the coding region. Interestingly, the distribution pattern for H3K9me3, generally linked to heterochromatin formation, was very similar to the distribution observed with the euchromatin marks, suggesting that this modification could be involved in transcriptional activation of rRNA genes in L. major.
Parasitology | 2016
Rodrigo Moreno-Campos; Luis E. Florencio-Martínez; Tomás Nepomuceno-Mejía; Saúl Rojas-Sánchez; Daniel E. Vélez-Ramírez; Norma E. Padilla-Mejía; Elisa Figueroa-Angulo; Rebeca Manning-Cela; Santiago Martínez-Calvillo
Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.
Parasites & Vectors | 2016
Saúl Rojas-Sánchez; Elisa Figueroa-Angulo; Rodrigo Moreno-Campos; Luis E. Florencio-Martínez; Rebeca Manning-Cela; Santiago Martínez-Calvillo
BackgroundLeishmania and other trypanosomatid parasites possess atypical mechanisms of gene expression, including the maturation of mRNAs by trans-splicing and the involvement of RNA Polymerase III in transcription of all snRNA molecules. Since snRNAs are essential for trans-splicing, we are interested in the study of the sequences that direct their expression. Here we report the characterization of L. major U2 snRNA promoter region.ResultsAll species of Leishmania possess a single U2 snRNA gene that contains a divergently-oriented tRNA-Ala gene in the upstream region. Between these two genes we found a tRNA-like sequence that possesses conserved boxes A and B. Primer extension and RT-qPCR analyses with RNA from transiently-transfected cells showed that transcription of L. major U2 snRNA is almost abolished when boxes A and B from the tRNA-like are deleted or mutated. The levels of the U2 snRNA were also highly affected when base substitutions were introduced into box B from the tRNA-Ala gene and the first nucleotides of the U2 snRNA gene itself. We also demonstrate that the tRNA-like is transcribed, generating a main transcript of around 109 bases. As pseudouridines in snRNAs are required for splicing in other organisms, we searched for this modified nucleotide in the L. major U2 snRNA. Our results show the presence of six pseudouridines in the U2 snRNA, including one in the Sm site that has not been reported in other organisms.ConclusionsFour different regions control the transcription of the U2 snRNA gene in L. major: boxes A and B from the neighbor tRNA-like, box B from the upstream tRNA-Ala gene and the first nucleotides of the U2 snRNA. Thus, the promoter region of L. major U2 snRNA is different from any other promoter reported for snRNAs. Pseudouridines could play important roles in L. major U2 snRNA, since they were found in functionally important regions, including the branch point recognition region and the Sm binding site.