Luis Fernando Rodriguez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis Fernando Rodriguez.
Archive | 2012
Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; Christopher H. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector (Agocs et al, this conf.) that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.
Proceedings of SPIE | 2008
Alejandro Oscoz; R. Rebolo; Roberto López; Antonio Pérez-Garrido; Jorge Andrés Pérez; Sergi R. Hildebrandt; Luis Fernando Rodriguez; Juan José Piqueras; Isidro Villó; José Miguel González; Rafael Barrena; Gabriel Gómez; Aníbal García; Pilar Montañés; Alfred Rosenberg; Emilio Cadavid; A. Calcines; Anastasio Díaz-Sánchez; R. Kohley; Y. Martín; José Peñate; V. Sánchez
FastCam is an instrument jointly developed by the Spanish Instituto de Astrofísica de Canarias and the Universidad Politécnica de Cartagena designed to obtain high spatial resolution images in the optical wavelength range from ground-based telescopes. The instrument consists of a very low noise and very fast readout speed EMCCD camera capable of reaching the diffraction limit of medium-sized telescopes from 500 to 850 nm. FastCam incorporates a FPGAs-based device to save and evaluate those images minimally disturbed by atmospheric turbulence in real time. The undisturbed images represent a small fraction of the observations. Therefore, a special software package has been developed to extract, from cubes of tens of thousands of images, those with better quality than a given level. This is done in parallel with the data acquisition at the telescope. After the first tests in the laboratory, FastCam has been successfully tested in three telescopes: the 1.52-meter TCS (Teide Observatory), the 2.5-meter NOT, and the 4.2-meter WHT (Roque de los Muchachos Observatory). The theoretical diffraction limit of each telescope has been reached in the I band (850 nm) -0.15, 0.08 and 0.05 arcsec, respectively-, and similar resolutions have been also obtained in the V and R bands. Future work will include the development of a new instrument for the 10.4-meter GTC telescope on La Palma.
Proceedings of SPIE | 2012
Gavin Dalton; Scott Trager; Don Carlos Abrams; David Carter; P. Bonifacio; J. Alfonso L. Aguerri; Mike MacIntosh; C. J. Evans; Ian Lewis; Ramón Navarro; Tibor Agócs; Kevin Dee; Sophie Rousset; Ian Tosh; Kevin Middleton; J. Pragt; David Terrett; Matthew Brock; Chris R. Benn; Marc Verheijen; Diego Cano Infantes; Craige Bevil; Iain A. Steele; Chris Mottram; Stuart Bates; Francis J. Gribbin; Jürg Rey; Luis Fernando Rodriguez; Jose Miguel Delgado; Isabelle Guinouard
We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2 degree prime focus field of view at the WHT, with a buffered pick and place positioner system hosting 1000 multi-object (MOS) fibres or up to 30 integral field units for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000.
Astronomy and Astrophysics | 2011
L. Labadie; R. Rebolo; I. Villo; Jorge A. Pérez-Prieto; Antonio Pérez-Garrido; S. R. Hildebrandt; B. Femenía; Anastasio Díaz-Sánchez; V. J. S. Béjar; A. Oscoz; Ramon J. Garcia Lopez; J. Piqueras; Luis Fernando Rodriguez
Context. High-contrast imaging at optical wavelengths is limited by the modest correction of conventional near-IR optimized AO systems. We take advantage of new fast and low-readout-noise detectors to explore the potential of fast imaging coupled to postprocessing techniques to detect faint companions of stars at small angular separations. Aims. We have focused on I-band direct imaging of the previously detected brown dwarf binary HD 130948 BC, attempting to spatially resolve the L2+L2 system considered as a benchmark for the determination of substellar objects dynamical masses. Methods. We used the lucky-imaging instrument FastCam at the 2.5-m Nordic Telescope to obtain quasi diffraction-limited images of HD 130948 with ∼0.1 �� resolution. In order to improve the detectability of the faint binary in the vicinity of a bright (I = 5.19 ± 0.03) solar-type star, we implemented a post-processing technique based on wavelet transform filtering of the image, which allows us to strongly enhance the presence of point-like sources in regions where the primary halo generally dominates. Results. We detect for the first time the binary brown dwarf HD 130948 BC in the optical band I with a SNR ∼ 9 at 2.561 �� ± 0.007 �� (46.5 AU) from HD 130948 A and confirm in two independent datasets (2008 May 29 and July 25) that the object is real, as opposed to time-varying residual speckles. We do not resolve the binary, which can be explained by astrometric results posterior to our observations, which predict a separation below the telescope resolution. We reach a contrast of ΔI = 11.30 ± 0.11 at this distance, and estimate a combined magnitude for this binary I = 16.49 ± 0.11 and a I − J color of 3.29 ± 0.13. At 1 �� , we reach a detectability 10.5 mag fainter than the primary after image post-processing. Conclusions. We obtain on-sky validation of a technique based on speckle imaging and wavelet-transform post-processing, which improves the high-contrast capabilities of speckle imaging. The I − J color measured for the BD companion is slightly bluer, but still consistent with what is typically found for L2 dwarfs (∼3.4–3.6).
Monthly Notices of the Royal Astronomical Society | 2011
B. Femenía; R. Rebolo; Jorge A. Pérez-Prieto; Sergi R. Hildebrandt; L. Labadie; Antonio Pérez-Garrido; V. J. S. Béjar; Anastasio Díaz-Sánchez; Isidro Villó; Alex Oscoz; Roberto López; Luis Fernando Rodriguez; J. Piqueras
The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by condu cting observations of the close 0: 1 brown dwarf binary GJ569Bab. We took 50000 I-band images with our LI instrument FastCam attached to NAOMI, the 4.2-m William Herschel Telescope (WHT) AO facility. In order to extract the most of the astrometry and photometry of the GJ569Bab system we have resorted to a PSF fitting technique us ing the primary star GJ569A as a suitable PSF reference which exhibits an I-band magnitude of 7: 78�0: 03. The AO+LI observations at WHT were able to resolve the binary system GJ569Bab located at 4: 00 92� 0: 05 from GJ569A. We measure a separation of 98: 4�1: 1 mas and I-band magnitudes of 13: 86�0: 03 and 14: 48�0: 03 and I− J colors of 2.72� 0.08 and 2.83� 0.08 for the Ba and Bb components, respectively. Our study rules out the presence of any other companion to GJ569A down to magnitude I�17 at distances larger than 1 00 . The I− J colors measured are consistent with M8.5-M9 spectral types for the Ba and Bb components. The available dynamical, photometric and spectroscopic data are consistent with a binary system with Ba being slightly (10-20%) more massive than Bb. We obtain new orbital parameters which are in good agreement with those in the literature.
High-power lasers and applications | 2002
Marcos Reyes Garcia-Talavera; Jose A. Rodríguez; Teodora Viera; Heidi Moreno-Arce; Jose Luis Rasilla; Fernando Gago; Luis Fernando Rodriguez; Panchita Gomez; Ezequiel Ballesteros Ramirez
The European Space Agency (ESA) has undertaken the development of Optical Data Relay payloads, aimed at establishing free space optical communication links between satellites. The first of such systems put into orbit is the SILEX project, in which an experimental link between a GEO satellite (ARTEMIS) and a LEO satellite (SPOT IV) will be used to relay earth observation data. In order to perform In Orbit Testing (IOT) of these and future optical communications systems, ESA and the Instituto de Astrofisica de Canarias (IAC) reached an agreement for the building of the Optical Ground Station (OGS) in the IAC Teide Observatory, which consists basically of a 1-meter telescope and the suitable instrumentation for establishing and testing bi-directional optical links with satellites. The presence of the atmosphere in the data path posses particular problems, with an impact on the instrumentation design. The transmission, reception and measurement functions, along with the overall control of the instruments, are performed at OGS by the Focal Plane Control Electronics (FPCE). The design and performance of this instrumentation is presented, emphasizing the Pointing, Acquisition and Tracking, the Tuneable Laser and the Master Control.
Proceedings of SPIE | 2016
Gavin B. Dalton; Scott Trager; Don Carlos Abrams; P. Bonifacio; J. Alfonso L. Aguerri; Kevin Middleton; Chris R. Benn; Kevin Dee; Frédéric Sayède; Ian Lewis; J. Pragt; Sergio Picó; N. A. Walton; Jeurg Rey; Carlos Allende Prieto; José Peñate; Emilie Lhome; Tibor Agócs; José Luis Benito Alonso; David Terrett; Matthew Brock; James Gilbert; Ellen Schallig; Andy Ridings; Isabelle Guinouard; Marc Verheijen; Ian Tosh; Kevin Rogers; M. A. Lee; Iain A. Steele
We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018.
Proceedings of SPIE | 2010
Lucas Labadie; R. Rebolo; Bruno Femenia; Isidro Villó; Anastasio Díaz-Sánchez; Alejandro Oscoz; Roberto López; Jorge A. Pérez-Prieto; Antonio Pérez-Garrido; Sergi R. Hildebrandt; Victor Béjar-Sánchez; Juan José Piqueras; Luis Fernando Rodriguez
In this paper, we present an original observational approach, which combines, for the first time, traditional speckle imaging with image post-processing to obtain in the optical domain diffraction-limited images with high contrast (10-5) within 0.5 to 2 arcseconds around a bright star. The post-processing step is based on wavelet filtering an has analogy with edge enhancement and high-pass filtering. Our I-band on-sky results with the 2.5-m Nordic Telescope (NOT) and the lucky imaging instrument FASTCAM show that we are able to detect L-type brown dwarf companions around a solar-type star with a contrast ▵I~12 at 2 and with no use of any coronographic capability, which greatly simplifies the instrumental and hardware approach. This object has been detected from the ground in J and H bands so far only with AO-assisted 8-10 m class telescopes (Gemini, Keck), although more recently detected with small-class telescopes in the K band. Discussing the advantage and disadvantage of the optical regime for the detection of faint intrinsic fluxes close to bright stars, we develop some perspectives for other fields, including the study of dense cores in globular clusters. To the best of our knowledge this is the first time that high contrast considerations are included in optical speckle imaging approach.
Proceedings of SPIE | 2008
M. Collados; A. Calcines; J. J. Díaz; Felix Gracia; C. Grivel-Gelly; R. López; H. Mangharam; E. Paez; Ángeles Pérez; Jose Luis Rasilla; Luis Fernando Rodriguez; J. Sánchez-Capuchino; H. Socas-Navarro
This communication reviews the participation of the Instituto de Astrofísica de Canarias (IAC) in the design of the European Solar Telescope. Apart of being the coordinator institution of the whole project, and, as such, responsible for the project managing, the IAC leads several tasks like overall instrument definition or characterization of the atmospheric turbulence profile with height or the definition of adequate detectors. More in particular, the IAC will design and build two long-base SHABAR (SHAdow BAnd Ranger), instruments to measure medium-altitude seeing. The IAC is also responsible for the design, together with other institutions, of the design of grating spectropolarimeters suitable for multiwavelength high spatial and spectral resolution.
Proceedings of SPIE | 2016
M. Reyes Garcia-Talavera; Victor Javier Sánchez Béjar; José Carlos López; Roberto López; Carlos A. Martín; Y. Martín; I. Montilla; Miguel Núñez; Marta Puga; Luis Fernando Rodriguez; Fabio Tenegi; Óscar Tubío; D. Bello; L. Cavaller; G. Prieto; M. Rosado
Since the beginning of the development of the Gran Telescopio Canarias (GTC), an Adaptive Optics (AO) system was considered necessary to exploit the full diffraction-limited potential of the telescope. The GTC AO system designed during the last years is based on a single deformable mirror conjugated to the telescope pupil, and a Shack-Hartmann wavefront sensor with 20 x 20 subapertures, using an OCAM2 camera. The GTCAO system will provide a corrected beam with a Strehl Ratio (SR) of 0.65 in K-band with bright natural guide stars. Most of the subsystems have been manufactured and delivered. The upgrade for the operation with a Laser Guide Star (LGS) system has been recently approved. The present status of the GTCAO system, currently in its laboratory integration phase, is summarized in this paper.