Luis Fusé
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luis Fusé.
Veterinary Parasitology | 2012
César Fiel; Alicia Silvina Fernández; E.M. Rodríguez; Luis Fusé; Pedro Steffan
A 4-year study on the free-living stages of cattle gastrointestinal nematodes was conducted to determine (a) the development time from egg to infective larvae (L3) inside the faecal pats, (b) the pasture infectivity levels over time, and (c) the survival of L3 on pasture. Naturally infected calves were allowed to contaminate 16 plots on monthly basis. Weekly monitoring of eggs per gram of faeces (epg) values and faecal cultures from these animals provided data for the contamination patterns and the relative nematode population composition. At the same time, faecal pats were shaped and deposited monthly onto herbage and sampled weekly to determine the development time from egg to L3. Herbage samples were collected fortnightly over a 16-month period after deposition to evaluate the pasture larval infectivity and survival of L3 over time. The development time from egg to L3 was 1-2 weeks in summer, 3-5 weeks in autumn, 4-6 weeks in winter, and 1-4 weeks in spring. The levels of contamination and pasture infectivity showed a clear seasonality during autumn-winter and spring, whilst a high mortality of larvae on pasture occurred in summer. Ostertagia spp., Cooperia spp. and Trichostrongylus spp. were predominant and a survival of L3 on pasture over a 1-year period was recorded in this study.
Veterinary Parasitology | 2013
L. Alvarez; Carlos Saumell; Luis Fusé; Laura Moreno; Laura Ceballos; Guilbert Domingue; Meritxell Donadeu; Baptiste Dungu; C. Lanusse
The goal of the current experiment was to assess the clinical efficacy of oxfendazole (OFZ) administered as a single oral dose (30 mg/kg) to pigs naturally parasitized with Ascaris suum, Oesophagostomum spp., Metastrongylus spp. and Trichuris suis. Thirty-six local ecotype piglets were divided into three independent experiments, named I, II and III (n=12 each), respectively. Each experiment involved two different groups (n=6): Untreated Control and OFZ treated. Animals were naturally parasitized with A. suum (Experiments I, II and III), Oesophagostomum spp. (Experiments I and II), T. suis (Experiments II and III) and Metastrongylus spp. (Experiment I). Pigs in the treated group received OFZ (Synanthic(®), Merial Ltd., 9.06% suspension) orally at 30 mg/kg dose. At five (5) days post-treatment, animals were sacrificed and the clinical efficacy of the OFZ treatment was established following the currently available WAAVP guidelines for a controlled efficacy test. None of the animals involved in this experiment showed any adverse events during the study. OFZ treatment given as a single 30 mg/kg oral dose showed a 100% efficacy against all the nematode parasites present in the three experiments. In conclusion, under the current experimental conditions, OFZ orally administered to naturally parasitized piglets at a single dose of 30 mg/kg was safe and highly efficacious (100%) against adult stages of A. suum, Oesophagostomum spp., T. suis and Metastrongylus spp.
Revista Iberoamericana De Micologia | 2011
María Federica Sagüés; Peter P. Purslow; Silvina Fernández; Luis Fusé; Lucía Emilia Iglesias; Carlos Saumell
The control of gastrointestinal nematodes relies at present mostly on antihelmintic treatments using synthetic molecules. This approach, however, has led to the appearance of resistance to some types of antihelmintics which, together with the need to cut down on the use of chemicals, has fostered the development of other control methods, such as biological control, which is the use of living organisms that are naturally antagonistic to an unwanted species. Among the natural enemies of nematode parasitic larvae is the microfungus Duddingtonia flagrans. Research has shown the ability of this fungus to reduce the number of nematode larvae in faeces, the ability of its chlamydospores to survive the passage through the gastrointestinal tract of livestock and, moreover, to keep its germinative ability, thus facilitating the development of formulations. The present review looks at the species currently used and the different ways of administering already tested nematophagous fungi.
Veterinary Parasitology | 2017
Carlos Saumell; A. Lifschitz; Renato Baroni; Luis Fusé; M. Bistoletti; Federica Sagüés; Santiago Bruno; Gustavo Alvarez; C. Lanusse; L. Alvarez
The goal of the current study was to evaluate the comparative efficacy of ivermectin (IVM) against small strongyles (cyathostomins) following its oral and intramuscular (IM) administration, in naturally parasitized horses. The parasitological data were complemented with the assessment of the plasma disposition kinetics of IVM. The trial included two different experiments. In experiment I, 40 horses naturally infected with small strongyles were randomly allocated into four experimental groups (n=10) and treated with IVM (0.2mg/kg) as follows: IVM oral paste, animals were orally treated with Eqvalan® (IVM 1.87% paste, as the reference formulation) by the oral route; IVM oral solution, animals were orally treated with Remonta® (IVM 2% solution, as a test formulation); IVM IM solution, animals were IM treated with the test product (Remonta® IVM 2% solution); and control, animals were kept without treatment as untreated controls. In experiment II, 24 horses naturally parasitized with small strongyles were randomly allocated into the same four experimental groups (n=6) described for experiment I. Faecal samples were individually collected directly from the rectum of each horse prior (day -1) and at 7 and 15 (Experiment I) or 7, 15 and 21 (Experiment II) days after-treatment, to assess the eggs per gram (epg) counts and estimate the efficacy of the treatments. Additionally, the comparative plasma disposition kinetics of IVM in treated animals was assessed in experiment II. In both experiments, an excellent (100%) IVM efficacy was observed after its oral administration (test and reference formulations). However, the IM administration of IVM resulted in a low efficacy (36-64%). Similar IVM plasma concentration was observed after its oral administration as a paste or as a solution. The higher IVM plasma profiles observed after the IM administration accounted for an enhanced systemic availability. The improved IVM efficacy observed against adult cyathostomins after its oral administration can be explained by an enhanced drug exposure of the worms located at the lumen of the large intestine. These findings may have a direct impact on the practical use of macrocyclic lactones in horses.
Revista Iberoamericana De Micologia | 2015
Carlos Saumell; Alicia Silvina Fernández; Luis Fusé; Manuela Rodríguez; María Federica Sagüés; Lucía Emilia Iglesias
BACKGROUND Biological control of gastrointestinal nematodes of ruminants by use of nematophagous fungi would become part of any livestock parasite integral control system. Identifying autochthonous species that could then be selected for mass production is an important phase in the practical use of biological control. AIMS To search for nematophagous fungi with potential use as biological control agents against gastrointestinal nematodes in Argentina. METHODS Decomposing cattle faeces sampled in different locations were incubated in water agar 2% with Panagrellus sp. The developed nematophagous fungi were transferred to new water agar 2% plates and then to corn meal agar plates in order to carry out their identification. Fungal diversity and richness were also assessed. RESULTS Seventeen species from nine genera of nematophagous fungi were found. Twelve species were nematode-trapping fungi and three species plus two fungi identified to genus level corresponded to endoparasitic fungi. Arthrobotrys conoides, Arthrobotrys oligospora, Duddingtonia flagrans, Monacrosporium doedycoides, Arthrobotrys robusta and Drechmeria coniospora were the most frequently isolated species overall in the whole study (6.6%, 5.7%, 5.7%, 5.7%, 4.7% and 4.7%, respectively) although other species were more frequently recorded at local levels such as Arthrobotrys pyriformis (18.8%). Only A. conoides has been previously isolated from ruminant faecal samples in Argentina. Five nematode-trapping fungal species are mentioned for the first time in the Americas CONCLUSIONS D. flagrans and A. conoides, both identified in the present study, are among the most promising ones as biological control agents against gastrointestinal nematodes of ruminants.
Experimental Parasitology | 2018
Franco Bilotto; Luis Fusé; María Federica Sagüés; Lucía Emilia Iglesias; Alicia Silvina Fernández; Sara Zegbi; Inés Guerrero; Carlos Saumell
Duddingtonia flagrans is a natural strain of Nematophagous-Fungi isolated around the world. It has demonstrated efficacy and ease of use in laboratory as well as in field conditions. The fungus contributes to the prophylactic control of the worms by reducing the number of L3 on pasture. The aims of this study were to test and analyze the predatory effect of D. flagrans under sunny and shaded conditions on the L3 in the faeces, and to verify the reduction of translation to pasture during summer and winter seasons. Faecal Mass Units (FMUs) were assigned to two treated groups (groups treated with D. flagrans chlamydospores, TG) and two untreated groups (without D. flagrans chlamydospores, UG), in summer and winter, under sunny and shaded conditions. FMUs and herbage samples were taken for parasitological workup. Predatory activity of D. flagrans was evident under both conditions for the summer experiment but was not manifest for the winter experiment. In summer, an interaction between sunny and shaded conditions and predatory activity of D. flagrans was found. Environmental conditions on predatory activity should be considered when designing strategies for the implementation of D. flagrans in grazing systems to smooth the infectivity curve of L3.
Journal of Helminthology | 2014
María Federica Sagüés; P. Purslow; Alicia Silvina Fernández; Lucía Emilia Iglesias; Luis Fusé; Carlos Saumell
This trial was conducted to evaluate the predatory activity of Duddingtonia flagrans incorporated into soy protein-based polymers as a controlled-release device (CRD). The rate of fungal release from the polymers and time of residence of the CRD in the rumen of a cannulated sheep was also determined. After administration to the sheep, the CRD was extracted at weekly intervals over a month for observation of its physical structure and faeces were collected to observe the subsequent predatory activity of the fungus in Petri dishes with water-agar 2% and Panagrellus spp. as bait. The CRD slowly degraded in the rumen over 4 weeks and liberated D. flagrans into the faeces. The formulation of the soy protein-based polymers did not affect the predatory activity of the fungus. The study demonstrates that biodegradable soy protein polymers could potentially improve the use of nematophagous fungi for controlling nematode parasites of ruminants.
Parasitology Research | 2006
Lucía Emilia Iglesias; Carlos Saumell; Alicia Silvina Fernández; Luis Fusé; A. Lifschitz; Edgardo Rodriguez; Pedro Steffan; César Fiel
Parasitology Research | 2011
María Federica Sagüés; Luis Fusé; Alicia Silvina Fernández; Lucía Emilia Iglesias; Fabiana C. Moreno; Carlos Saumell
Parasitology Research | 2011
Lucía Emilia Iglesias; Luis Fusé; A. Lifschitz; Edgardo Rodriguez; María Federica Sagüés; Carlos Saumell