Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis J. V. Galietta is active.

Publication


Featured researches published by Luis J. V. Galietta.


Science | 2008

TMEM16A, A Membrane Protein Associated with Calcium-Dependent Chloride Channel Activity

Antonella Caputo; Emanuela Caci; Loretta Ferrera; Nicoletta Pedemonte; Cristina Barsanti; Elvira Sondo; Ulrich Pfeffer; Roberto Ravazzolo; Olga Zegarra-Moran; Luis J. V. Galietta

Calcium-dependent chloride channels are required for normal electrolyte and fluid secretion, olfactory perception, and neuronal and smooth muscle excitability. The molecular identity of these membrane proteins is still unclear. Treatment of bronchial epithelial cells with interleukin-4 (IL-4) causes increased calcium-dependent chloride channel activity, presumably by regulating expression of the corresponding genes. We performed a global gene expression analysis to identify membrane proteins that are regulated by IL-4. Transfection of epithelial cells with specific small interfering RNA against each of these proteins shows that TMEM16A, a member of a family of putative plasma membrane proteins with unknown function, is associated with calcium-dependent chloride current, as measured with halide-sensitive fluorescent proteins, short-circuit current, and patch-clamp techniques. Our results indicate that TMEM16A is an intrinsic constituent of the calcium-dependent chloride channel. Identification of a previously unknown family of membrane proteins associated with chloride channel function will improve our understanding of chloride transport physiopathology and allow for the development of pharmacological tools useful for basic research and drug development.


Journal of Clinical Investigation | 2002

Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion

Tonghui Ma; Jay R. Thiagarajah; Hong Yang; N.D. Sonawane; Chiara Folli; Luis J. V. Galietta; A. S. Verkman

Secretory diarrhea is the leading cause of infant death in developing countries and a major cause of morbidity in adults. The cystic fibrosis transmembrane conductance regulator (CFTR) protein is required for fluid secretion in the intestine and airways and, when defective, causes the lethal genetic disease cystic fibrosis. We screened 50,000 chemically diverse compounds for inhibition of cAMP/flavone-stimulated Cl(-) transport in epithelial cells expressing CFTR. Six CFTR inhibitors of the 2-thioxo-4-thiazolidinone chemical class were identified. The most potent compound discovered by screening of structural analogs, CFTR(inh)-172, reversibly inhibited CFTR short-circuit current in less than 2 minutes in a voltage-independent manner with K(I) approximately 300 nM. CFTR(inh)-172 was nontoxic at high concentrations in cell culture and mouse models. At concentrations fully inhibiting CFTR, CFTR(inh)-172 did not prevent elevation of cellular cAMP or inhibit non-CFTR Cl(-) channels, multidrug resistance protein-1 (MDR-1), ATP-sensitive K(+) channels, or a series of other transporters. A single intraperitoneal injection of CFTR(inh)-172 (250 micro g/kg) in mice reduced by more than 90% cholera toxin-induced fluid secretion in the small intestine over 6 hours. Thiazolidinone CFTR inhibitors may be useful in developing large-animal models of cystic fibrosis and in reducing intestinal fluid loss in cholera and other secretory diarrheas.


Journal of Clinical Investigation | 2005

Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening

Nicoletta Pedemonte; Gergely L. Lukacs; Kai Du; Emanuela Caci; Olga Zegarra-Moran; Luis J. V. Galietta; A. S. Verkman

The most common cause of cystic fibrosis (CF) is deletion of phenylalanine 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) chloride channel. The DeltaF508 mutation produces defects in folding, stability, and channel gating. To identify small-molecule correctors of defective cellular processing, we assayed iodide flux in DeltaF508-CFTR-transfected epithelial cells using a fluorescent halide indicator. Screening of 150,000 chemically diverse compounds and more than 1,500 analogs of active compounds yielded several classes of DeltaF508-CFTR correctors (aminoarylthiazoles, quinazolinylaminopyrimidinones, and bisaminomethylbithiazoles) with micromolar potency that produced greater apical membrane chloride current than did low-temperature rescue. Correction was seen within 3-6 hours and persisted for more than 12 hours after washout. Functional correction was correlated with plasma membrane expression of complex-glycosylated DeltaF508-CFTR protein. Biochemical studies suggested a mechanism of action involving improved DeltaF508-CFTR folding at the ER and stability at the cell surface. The bisaminomethylbithiazoles corrected DeltaF508-CFTR in DeltaF508/DeltaF508 human bronchial epithelia but did not correct a different temperature-sensitive CFTR mutant (P574H-CFTR) or a dopamine receptor mutant. Small-molecule correctors may be useful in the treatment of CF caused by the DeltaF508 mutation.


FEBS Letters | 2001

Green fluorescent protein-based halide indicators with improved chloride and iodide affinities.

Luis J. V. Galietta; Peter M. Haggie; A. S. Verkman

The green fluorescent protein YFP‐H148Q is sensitive to halides by a mechanism involving halide binding and a shift in pK a. However, a limitation of YFP‐H148Q is its low halide sensitivity, with K d>100 mM for Cl−. Indicators with improved sensitivities are needed for cell transport studies, particularly in drug discovery by high‐throughput screening, and for measurement of Cl− concentration in subcellular organelles. YFP‐H148Q libraries were generated in which pairs of residues in the vicinity of the halide binding site were randomly mutated. An automated procedure was developed to screen bacterial colonies for improved halide sensitivity. Analysis of 1536 clones revealed improved anion sensitivities with K d down to 2 mM for I− (I152L), 40 mM for Cl− (V163S), and 10 mM for NO3 − (I152L). The anion‐sensitive mechanism of these indicators was established and their utility in cells was demonstrated using transfected cells expressing the cystic fibrosis transmembrane conductance regulator chloride channel.


The Journal of General Physiology | 2004

Discovery of Glycine Hydrazide Pore-occluding CFTR Inhibitors: Mechanism, Structure–Activity Analysis, and In Vivo Efficacy

Chatchai Muanprasat; Nitin D. Sonawane; Danieli Salinas; Alessandro Taddei; Luis J. V. Galietta; A. S. Verkman

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated epithelial Cl− channel that, when defective, causes cystic fibrosis. Screening of a collection of 100,000 diverse small molecules revealed four novel chemical classes of CFTR inhibitors with Ki < 10 μM, one of which (glycine hydrazides) had many active structural analogues. Analysis of a series of synthesized glycine hydrazide analogues revealed maximal inhibitory potency for N-(2-naphthalenyl) and 3,5-dibromo-2,4-dihydroxyphenyl substituents. The compound N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101) reversibly inhibited CFTR Cl− conductance in <1 min. Whole-cell current measurements revealed voltage-dependent CFTR block by GlyH-101 with strong inward rectification, producing an increase in apparent inhibitory constant Ki from 1.4 μM at +60 mV to 5.6 μM at −60 mV. Apparent potency was reduced by lowering extracellular Cl− concentration. Patch-clamp experiments indicated fast channel closures within bursts of channel openings, reducing mean channel open time from 264 to 13 ms (−60 mV holding potential, 5 μM GlyH-101). GlyH-101 inhibitory potency was independent of pH from 6.5–8.0, where it exists predominantly as a monovalent anion with solubility ∼1 mM in water. Topical GlyH-101 (10 μM) in mice rapidly and reversibly inhibited forskolin-induced hyperpolarization in nasal potential differences. In a closed-loop model of cholera, intraluminal GlyH-101 (2.5 μg) reduced by ∼80% cholera toxin–induced intestinal fluid secretion. Compared with the thiazolidinone CFTR inhibitor CFTRinh-172, GlyH-101 has substantially greater water solubility and rapidity of action, and a novel inhibition mechanism involving occlusion near the external pore entrance. Glycine hydrazides may be useful as probes of CFTR pore structure, in creating animal models of CF, and as antidiarrheals in enterotoxic-mediated secretory diarrheas.


Journal of Biological Chemistry | 2001

Novel CFTR Chloride Channel Activators Identified by Screening of Combinatorial Libraries Based on Flavone and Benzoquinolizinium Lead Compounds

Luis J. V. Galietta; Mark F. Springsteel; Masahiro Eda; Edmund J. Niedzinski; Kolbot By; M. J. Haddadin; Mark J. Kurth; Michael H. Nantz; A. S. Verkman

The flavonoid genistein and the benzo[c]quinolizinium MPB-07 have been shown to activate the cystic fibrosis transmembrane conductance regulator (CFTR), the protein that is defective in cystic fibrosis. Lead-based combinatorial and parallel synthesis yielded 223 flavonoid, quinolizinium, and related heterocyclic compounds. The compounds were screened for their ability to activate CFTR at 50 μmconcentration by measurement of the kinetics of iodide influx in Fisher rat thyroid cells expressing wild-type or G551D CFTR together with the green fluorescent protein-based halide indicator YFP-H148Q. Duplicate screenings revealed that 204 compounds did not significantly affect CFTR function. Compounds of the 7,8-benzoflavone class, which are structurally intermediate between flavones and benzo[c]quinoliziniums, were effective CFTR activators with the most potent being 2-(4-pyridinium)benzo[h]4H-chromen-4-one bisulfate (UCcf-029). Compounds of the novel structural class of fused pyrazolo heterocycles were also strong CFTR activators with the most potent being 3-(3-butynyl)-5-methoxy-1-phenylpyrazole-4-carbaldehyde (UCcf-180). A CFTR inhibitor was also identified. The active compounds did not induce iodide influx in null cells deficient in CFTR. Short-circuit current measurements showed that the CFTR activators identified by screening induced strong anion currents in the transfected cell monolayers grown on porous supports. Compared with genistein, the most active compounds had up to 10 times greater potency in activating wild-type and/or G551D-CFTR. The activators had low cellular toxicity and did not elevate cellular cAMP concentration or inhibit phosphatase activity, suggesting that CFTR activation may involve a direct interaction. These results establish an efficient screening procedure to identify CFTR activators and inhibitors and have identified 7,8-benzoflavones and pyrazolo derivatives as novel classes of CFTR activators.


Journal of Biological Chemistry | 2002

High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening.

Tonghui Ma; L. Vetrivel; Hong Yang; Nicoletta Pedemonte; Olga Zegarra-Moran; Luis J. V. Galietta; A. S. Verkman

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein that reduce cAMP-stimulated Cl− conductance in airway and other epithelia. The purpose of this investigation was to identify new classes of potent CFTR activators. A collection of 60,000 diverse drug-like compounds was screened at 10 μmtogether with a low concentration of forskolin (0.5 μm) in Fisher rat thyroid epithelial cells co-expressing human CFTR and a green fluorescent protein-based Cl− sensor. Primary screening yielded 57 strong activators (greater activity than reference compound apigenin), most of which were unrelated in chemical structure to known CFTR activators, and 284 weaker activators. Secondary analysis of the strong activators included analysis of CFTR specificity, forskolin requirement, transepithelial short-circuit current, activation kinetics, dose response, toxicity, and activation mechanism. Three compounds, the most potent being a dihydroisoquinoline, activated CFTR by elevating cellular cAMP, probably by phosphodiesterase inhibition. Fourteen compounds activated CFTR without cAMP elevation or phosphatase inhibition, suggesting direct CFTR interaction. The most potent compounds had tetrahydrocarbazol, hydroxycoumarin, and thiazolidine core structures. These compounds induced CFTR Cl− currents rapidly (<5 min) with Kd down to 200 nm and were CFTR-selective, reversible, and nontoxic. Several compounds, the most potent being a trifluoromethylphenylbenzamine, activated the CF-causing mutant G551D, but with much weaker affinity (Kd > 10 μm). When added for 10 min, none of the compounds activated ΔPhe508-CFTR in transfected cells grown at 37 °C (with ΔPhe508-CFTR trapped in the endoplasmic reticulum). However, after correction of trafficking by 48 h of growth at 27 °C, tetrahydrocarbazol andN-phenyltriazine derivatives strongly stimulated Cl− conductance with Kd < 1 μm. The new activators identified here may be useful in defining molecular mechanisms of CFTR activation and as lead compounds in CF drug development.


Physiological Reviews | 2014

Structure and Function of TMEM16 Proteins (Anoctamins)

Nicoletta Pedemonte; Luis J. V. Galietta

TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithelial ion transport, smooth muscle contraction, olfaction, phototransduction, nociception, and control of neuronal excitability. Genetic ablation of TMEM16A in mice causes impairment of epithelial Cl- secretion, tracheal abnormalities, and block of gastrointestinal peristalsis. TMEM16A is directly regulated by cytosolic Ca2+ as well as indirectly by its interaction with calmodulin. Other members of the anoctamin family, such as TMEM16C, TMEM16D, TMEM16F, TMEM16G, and TMEM16J, may work as phospholipid scramblases and/or ion channels. In particular, TMEM16F (ANO6) is a major contributor to the process of phosphatidylserine translocation from the inner to the outer leaflet of the plasma membrane. Intriguingly, TMEM16F is also associated with the appearance of anion/cation channels activated by very high Ca2+ concentrations. Furthermore, a TMEM16 protein expressed in Aspergillus fumigatus displays both ion channel and lipid scramblase activity. This finding suggests that dual function is an ancestral characteristic of TMEM16 proteins and that some members, such as TMEM16A and TMEM16B, have evolved to a pure channel function. Mutations in anoctamin genes (ANO3, ANO5, ANO6, and ANO10) cause various genetic diseases. These diseases suggest the involvement of anoctamins in a variety of cell functions whose link with ion transport and/or lipid scrambling needs to be clarified.


Journal of Biological Chemistry | 2009

Regulation of TMEM16A chloride channel properties by alternative splicing

Loretta Ferrera; Antonella Caputo; Ifeoma Ubby; Erica Bussani; Olga Zegarra-Moran; Roberto Ravazzolo; Franco Pagani; Luis J. V. Galietta

Expression of TMEM16A protein is associated with the activity of Ca2+-activated Cl− channels. TMEM16A primary transcript undergoes alternative splicing. thus resulting in the generation of multiple isoforms. We have determined the pattern of splicing and assessed the functional properties of the corresponding TMEM16A variants. We found three alternative exons, 6b, 13, and 15, coding for segments of 22, 4, and 26 amino acids, respectively, which are differently spliced in human organs. By patch clamp experiments on transfected cells, we found that skipping of exon 6b changes the Ca2+ sensitivity by nearly 4-fold, resulting in Cl− currents requiring lower Ca2+ concentrations to be activated. At the membrane potential of 80 mV, the apparent half-effective concentration decreases from 350 to 90 nm when the segment corresponding to exon 6b is excluded. Skipping of exon 13 instead strongly reduces the characteristic time-dependent activation observed for Ca2+-activated Cl− channels at positive membrane potentials. This effect was also obtained by deleting only the second pair of amino acids corresponding to exon 13. Alternative splicing appears as an important mechanism to regulate the voltage and Ca2+ dependence of the TMEM16A-dependent Cl− channels in a tissue-specific manner.


Journal of Biological Chemistry | 1999

Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel.

Frédéric Becq; Yvette Mettey; Michael A. Gray; Luis J. V. Galietta; Robert L. Dormer; Marc D. Merten; Thierry Métayé; Valérie Chappe; Cécie Marvingt-Mounir; Olga Zegarra-Moran; Robert Tarran; Laurence Bulteau; Renaud Dérand; Malcome M.C. Pereira; Margaret A. McPherson; Christian Rogier; Michel Joffre; Barry E. Argent; Denis Sarrouilhe; Wafa Kammouni; Catherine Figarella; Bernard Verrier; Maurice Gola; Jean Michel Vierfond

Chloride channels play an important role in the physiology and pathophysiology of epithelia, but their pharmacology is still poorly developed. We have chemically synthesized a series of substituted benzo[c]quinolizinium (MPB) compounds. Among them, 6-hydroxy-7-chlorobenzo[c]quinolizinium (MPB-27) and 6-hydroxy-10-chlorobenzo[c]quinolizinium (MPB-07), which we show to be potent and selective activators of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. We examined the effect of MPB compounds on the activity of CFTR channels in a variety of established epithelial and nonepithelial cell systems. Using the iodide efflux technique, we show that MPB compounds activate CFTR chloride channels in Chinese hamster ovary (CHO) cells stably expressing CFTR but not in CHO cells lacking CFTR. Single and whole cell patch clamp recordings from CHO cells confirm that CFTR is the only channel activated by the drugs. Ussing chamber experiments reveal that the apical addition of MPB to human nasal epithelial cells produces a large increase of the short circuit current. This current can be totally inhibited by glibenclamide. Whole cell experiments performed on native respiratory cells isolated from wild type and CF null mice also show that MPB compounds specifically activate CFTR channels. The activation of CFTR by MPB compounds was glibenclamide-sensitive and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid-insensitive. In the human tracheal gland cell line MM39, MPB drugs activate CFTR channels and stimulate the secretion of the antibacterial secretory leukoproteinase inhibitor. In submandibular acinar cells, MPB compounds slightly stimulate CFTR-mediated submandibular mucin secretion without changing intracellular cAMP and ATP levels. Similarly, in CHO cells MPB compounds have no effect on the intracellular levels of cAMP and ATP or on the activity of various protein phosphatases (PP1, PP2A, PP2C, or alkaline phosphatase). Our results provide evidence that substituted benzo[c]quinolizinium compounds are a novel family of activators of CFTR and of CFTR-mediated protein secretion and therefore represent a new tool to study CFTR-mediated chloride and secretory functions in epithelial tissues.

Collaboration


Dive into the Luis J. V. Galietta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuela Caci

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

A. S. Verkman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elvira Sondo

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Paolo Scudieri

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Loretta Ferrera

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Tomati

Istituto Giannina Gaslini

View shared research outputs
Researchain Logo
Decentralizing Knowledge