Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeria Tomati is active.

Publication


Featured researches published by Valeria Tomati.


American Journal of Physiology-cell Physiology | 2010

Influence of cell background on pharmacological rescue of mutant CFTR

Nicoletta Pedemonte; Valeria Tomati; Elvira Sondo; Luis J. V. Galietta

Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs the maturation and gating of the CFTR protein. Such defects may be corrected in vitro by pharmacological modulators named as correctors and potentiators, respectively. We have evaluated a panel of correctors and potentiators derived from various sources to assess potency, efficacy, and mechanism of action. For this purpose, we have used functional and biochemical assays on two different cell expression systems, Fischer rat thyroid (FRT) and A549 cells. The order of potency and efficacy of potentiators was similar in the two cell types considered, with phenylglycine PG-01 and isoxazole UCCF-152 being the most potent and least potent, respectively. Most potentiators were also effective on two mutations, G551D and G1349D, that cause a purely gating defect. In contrast, corrector effect was strongly affected by cell background, with the extreme case of many compounds working in one cell type only. Our findings are in favor of a direct action of potentiators on CFTR, possibly at a common binding site. In contrast, most correctors seem to work indirectly with various mechanisms of action. Combinations of correctors acting at different levels may lead to additive F508del-CFTR rescue.


American Journal of Physiology-cell Physiology | 2011

RESCUE OF THE MUTANT CFTR CHLORIDE CHANNEL BY PHARMACOLOGICAL CORRECTORS AND LOW TEMPERATURE ANALYZED BY GENE EXPRESSION PROFILING

Elvira Sondo; Valeria Tomati; Emanuela Caci; Alessia Isabella Esposito; Ulrich Pfeffer; Nicoletta Pedemonte; Luis J. V. Galietta

The F508del mutation, the most frequent in cystic fibrosis (CF), impairs the maturation of the CFTR chloride channel. The F508del defect can be partially overcome at low temperature (27°C) or with pharmacological correctors. However, the efficacy of correctors on the mutant protein appears to be dependent on the cell expression system. We have used a bronchial epithelial cell line, CFBE41o-, to determine the efficacy of various known treatments and to discover new correctors. Compared with other cell types, CFBE41o- shows the largest response to low temperature and the lowest one to correctors such as corr-4a and VRT-325. A screening of a small-molecule library identified 9-aminoacridine and ciclopirox, which were significantly more effective than corr-4a and VRT-325. Analysis with microarrays revealed that 9-aminoacridine, ciclopirox, and low temperature, in contrast to corr-4a, cause a profound change in cell transcriptome. These data suggest that 9-aminoacridine and ciclopirox act on F508del-CFTR maturation as proteostasis regulators, a mechanism already proposed for the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). However, we found that 9-aminoacridine, ciclopirox, and SAHA, in contrast to corr-4a, VRT-325, and low temperature, do not increase chloride secretion in primary bronchial epithelial cells from CF patients. These conflicting data appeared to be correlated with different gene expression signatures generated by these treatments in the cell line and in primary bronchial epithelial cells. Our results suggest that F508del-CFTR correctors acting by altering the cell transcriptome may be particularly active in heterologous expression systems but markedly less effective in native epithelial cells.


Cell Cycle | 2008

A novel Bim-BH3-derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex-vivo anti-leukemic activity.

Raffaella c Ponassi; Barbara Biasotti; Valeria Tomati; Silvia Bruno; Alessandro Poggi; Davide Malacarne; Guido Cimoli; Annalisa Salis; Sarah Pozzi; Maurizio Miglino; Gianluca Damonte; Pietro Cozzini; Francesca Spyrakis; Barbara Campanini; Luca Bagnasco; Nicoletta Castagnino; Lorenzo Tortolina; Anna Mumot; Francesco Frassoni; Antonio Daga; Michele Cilli; Federica Piccardi; Ilaria Monfardini; Miriam Perugini; Gabriele Zoppoli; Cristina D'Arrigo; Raffaele Pesenti; Silvio Parodi

BH3-only members of the Bcl-2 family exert a fundamental role in apoptosis induction. This work focuses on the development of a novel peptidic molecule based on the BH3 domain of Bim. The antiapoptotic molecule Bcl-XL, involved in cancer development/progression and tumour resistance to cytotoxic drugs, is a target for Bim. According to a rational study of the structural interactions between wt Bim-BH3 and Bcl-XL, we replaced specific residues of Bim-BH3 with natural and non-natural aminoacids and added an internalizing sequence, thus increasing dramatically the inhibitory activity of our modified Bim-BH3 peptide, called 072RB. Confocal microscopy and flow cytometry demonstrated cellular uptake and internalization of 072RB, followed by co-localization with mitochondria. Multiparameter flow cytometry demonstrated that the 072RB dose-dependent growth inhibition of leukaemia cell lines was due to apoptotic cell death. No effect was observed when cells were treated with the internalizing vector alone or a mutated control peptide (single aminoacid substitution L94A). Ex-vivo derived leukemic cells from acute myeloid leukaemia (AML) patients underwent cell death when cultured in vitro in the presence of 072RB. Conversely, no significant cytotoxic effect was observed when 072RB was administered to cultures of peripheral blood mononuclear cells, either resting or PHA-stimulated, and bone marrow cells of normal donors. Xenografts of human AML cells in NOD/SCID mice displayed a significant delay of leukemic cell growth upon treatment with 072RB administered intravenously (15 mg/Kg three times, 48 hours after tumour cell injection). Altogether, these observations support the therapeutic potentials of this novel BH3 mimetic.


Biochimica et Biophysica Acta | 2014

Non-canonical translation start sites in the TMEM16A chloride channel

Elvira Sondo; Paolo Scudieri; Valeria Tomati; Emanuela Caci; Amelia Mazzone; Gianrico Farrugia; Roberto Ravazzolo; Luis J. V. Galietta

TMEM16A is a plasma membrane protein with voltage- and calcium-dependent chloride channel activity. The role of the various TMEM16A domains in expression and function is poorly known. In a previous study, we found that replacing the first ATG of the TMEM16A coding sequence with a nonsense codon (M1X mutation), to force translation from the second ATG localized at position 117, only had minor functional consequences. Therefore, we concluded that this region is dispensable for TMEM16A processing and channel activity. We have now removed the first 116 codons from the TMEM16A coding sequence. Surprisingly, the expression of the resulting mutant, Δ(1–116), resulted in complete loss of activity. We hypothesized that, in the mutant M1X, translation may start at a position before the second ATG, using a non-canonical start codon. Therefore, we placed an HA-epitope at position 89 in the M1X mutant. We found, by western blot analysis, that the HA-epitope can be detected, thus demonstrating that translation starts from an upstream non-ATG codon. We truncated the N-terminus of TMEM16A at different sites while keeping the HA-epitope. We found that stepwise shortening of TMEM16A caused an in parallel stepwise decrease in TMEM16A expression and function. Our results indicate that indeed the N-terminus of TMEM16A is important for its activity. The use of an alternative start codon appears to occur in a naturally-occurring TMEM16A isoform that is particularly expressed in human testis. Future experiments will need to address the role of normal and alternative amino-terminus in TMEM16A structure and function.


Cancer Biology & Therapy | 2009

Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic

Fabio Ghiotto; Franco Fais; Claudya Tenca; Valeria Tomati; Fortunato Morabito; Salvatore Casciaro; Anna Mumot; Gabriele Zoppoli; Ermanno Ciccone; Silvio Parodi; Silvia Bruno

B-cell chronic lymphocytic leukemia (B-CLL) is the most common leukemia in human adults of the Western world and no definitive cure is yet available. The disease is characterized by accumulation of clonal malignant B lymphocytes resistant to apoptosis. Strategies to hit the anti-apoptotic drift of the Bcl-2 family in B-CLL cells are being explored. A novel peptidomimetic based on the BH3 domain of the pro-apoptotic protein Bim and recently shown to exert significant apoptotic activity on acute myeloid leukemia cells, both in vitro and in vivo, was assayed on ex-vivo derived leukemic cells from untreated B-CLL patients (n=7). We found that this peptide, named 072RB, induced apoptosis of B-CLL samples at a concentration that does not affect viability of peripheral and bone marrow derived lymphocytes from healthy donors. Apoptosis was demonstrated by activation of Bak and Bax, externalization of plasma membranes phosphadydilserines, appearance of hypodiploid events in DNA flow cytometry histograms and was accompanied by dissipation of the mitochondrial transmembrane potential. Before the onset of marked apoptotic signs a progressive decline of the relevant anti-apoptotic proteins Bcl-XL and Mcl-1 could be observed. The negative control peptide 072RBL94A was ineffective for B-CLL cells, supporting the sequence specificity of 072RB activity. No relationship was found between responsiveness to 072RB and Mcl-1/Bcl-XL basal levels or decrease magnitude, possibly because of the limited sample size of the study. Altogether, we demonstrate that 072RB induces significant apoptosis of B-CLL cells subsequent to Bcl-XL and Mcl-1 down-regulation.


Scientific Reports | 2016

Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release.

Giulia Gorrieri; Paolo Scudieri; Emanuela Caci; Marco Schiavon; Valeria Tomati; Francesco Sirci; Francesco Napolitano; Diego Carrella; Ambra Gianotti; Ilaria Musante; Maria Favia; Valeria Casavola; Lorenzo Guerra; Federico Rea; Roberto Ravazzolo; Diego di Bernardo; Luis J. V. Galietta

Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus.


Scientific Reports | 2015

Genetic Inhibition of the Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated to F508del Cystic Fibrosis Mutation

Valeria Tomati; Elvira Sondo; Andrea Armirotti; Emanuela Caci; Emanuela Pesce; Monica Marini; Ambra Gianotti; Young Ju Jeon; Michele Cilli; Angela Pistorio; Luca Mastracci; Roberto Ravazzolo; Bob J. Scholte; Ze'ev Ronai; Luis J. V. Galietta; Nicoletta Pedemonte

Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets. To evaluate possible candidates for F508del-CFTR rescue, we screened a siRNA library targeting known CFTR interactors. Our analysis identified RNF5 as a protein whose inhibition promoted significant F508del-CFTR rescue and displayed an additive effect with the investigational drug VX-809. Significantly, RNF5 loss in F508del-CFTR transgenic animals ameliorated intestinal malabsorption and concomitantly led to an increase in CFTR activity in intestinal epithelial cells. In addition, we found that RNF5 is differentially expressed in human bronchial epithelia from CF vs. control patients. Our results identify RNF5 as a target for therapeutic modalities to antagonize mutant CFTR proteins.


Journal of Biological Chemistry | 2010

Modulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity and Genistein Binding by Cytosolic pH

Raffaella Melani; Valeria Tomati; Luis J. V. Galietta; Olga Zegarra-Moran

Potentiators are molecules that increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Some potentiators can also inhibit CFTR at higher concentrations. The activating binding site is thought to be located at the interface of the dimer formed by the two nucleotide-binding domains. We have hypothesized that if binding of potentiators involves titratable residues forming salt bridges, then modifications of cytosolic pH (pHi) would alter the binding affinity. Here, we analyzed the effect of pHi on CFTR activation and on the binding of genistein, a well known CFTR potentiator. We found that pHi does modify CFTR maximum current (Im) and half-activation concentration (Kd): Im = 127.7, 185.5, and 231.8 μA/cm2 and Kd = 32.7, 56.6 and 71.9 μm at pH 6, 7.35, and 8, respectively. We also found that the genistein apparent dissociation constant for activation (Ka) increased at alkaline pHi, near cysteine pK (Ka = 1.83, 1.81 and 4.99 μm at pHi 6, 7.35, and 8, respectively), suggesting the involvement of cysteines in the binding site. Mutations of cysteine residues predicted to be within (Cys-491) or outside (Cys-1344) the potentiator-binding site showed that Cys-491 is responsible for the sensitivity of potentiator binding to alkaline pHi. Effects of pHi on inhibition by high genistein doses were also analyzed. Our results extend previous data about multiple effects of pHi on CFTR activity and demonstrate that binding of potentiators involves salt bridge formation with amino acids of nucleotide-binding domain 1.


Current Pharmaceutical Design | 2016

RNF5, DAB2 and Friends: Novel Drug Targets for Cystic Fibrosis

Elvira Sondo; Emanuela Pesce; Valeria Tomati; Monica Marini; Nicoletta Pedemonte

BACKGROUND Deletion of phenylalanine 508 is the most frequent mutation causing cystic fibrosis. It causes multiple defects: 1) misfolding of the protein causing retention at the ER (processing defect); 2) reduced channel activity (gating defect); 3) reduced plasma membrane residency time due to increased internalization rate and defective recycling. METHODS Druggability of F508del-CFTR was demonstrated by several studies. Correctors are molecules able to improve maturation and trafficking to the membrane of F508del- CFTR. Correctors could act as pharmacological chaperones or as proteostasis regulators. Pharmacological chaperones act directly on mutant CFTR, while proteostasis regulators modify the proteostasis environment leading to beneficial effects on CFTR maturation. RESULTS The use of a single compound is not sufficient to promote a therapeutically relevant F508del-CFTR rescue. Drug therapy for CF will require combinations of correctors exploiting different mechanisms of action, i.e. pharmacological chaperones combined together or with a proteostasis regulator. CONCLUSION Development of more effective CF drugs could therefore rely on a better understanding of the molecular events underlying CFTR processing/degradation. This review will focus on most promising pathways and related targets for the development of novel CF pharmacotherapies.


JCI insight | 2018

Thymosin α-1 does not correct F508del-CFTR in cystic fibrosis airway epithelia

Valeria Tomati; Emanuela Caci; Loretta Ferrera; Emanuela Pesce; Elvira Sondo; Deborah M. Cholon; Nancy L. Quinney; Susan E. Boyles; Andrea Armirotti; Roberto Ravazzolo; Luis J. V. Galietta; Martina Gentzsch; Nicoletta Pedemonte

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel causes misfolding and premature degradation. Considering the numerous effects of the F508del mutation on the assembly and processing of CFTR protein, combination therapy with several pharmacological correctors is likely to be required to treat CF patients. Recently, it has been reported that thymosin α-1 (Tα-1) has multiple beneficial effects that could lead to a single-molecule-based therapy for CF patients with F508del. Such effects include suppression of inflammation, improvement in F508del-CFTR maturation and gating, and stimulation of chloride secretion through the calcium-activated chloride channel (CaCC). Given the importance of such a drug, we aimed to characterize the underlying molecular mechanisms of action of Tα-1. In-depth analysis of Tα-1 effects was performed using well-established microfluorimetric, biochemical, and electrophysiological techniques on epithelial cell lines and primary bronchial epithelial cells from CF patients. The studies, which were conducted in 2 independent laboratories with identical outcome, demonstrated that Tα-1 is devoid of activity on mutant CFTR as well as on CaCC. Although Tα-1 may still be useful as an antiinflammatory agent, its ability to target defective anion transport in CF remains to be further investigated.

Collaboration


Dive into the Valeria Tomati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuela Caci

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Elvira Sondo

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Emanuela Pesce

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Armirotti

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Paolo Scudieri

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Ambra Gianotti

Istituto Giannina Gaslini

View shared research outputs
Researchain Logo
Decentralizing Knowledge