Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis M. Valor is active.

Publication


Featured researches published by Luis M. Valor.


The Journal of Neuroscience | 2011

Ablation of CBP in Forebrain Principal Neurons Causes Modest Memory and Transcriptional Defects and a Dramatic Reduction of Histone Acetylation But Does Not Affect Cell Viability

Luis M. Valor; Matias M. Pulopulos; María Jiménez-Minchan; Roman Olivares; Beat Lutz; Angel Barco

Rubinstein-Taybi syndrome (RSTS) is an inheritable disease associated with mutations in the gene encoding the CREB (cAMP response element-binding protein)-binding protein (CBP) and characterized by growth impairment, learning disabilities, and distinctive facial and skeletal features. Studies in mouse models for RSTS first suggested a direct role for CBP and histone acetylation in cognition and memory. Here, we took advantage of the genetic tools for generating mice in which the CBP gene is specifically deleted in postmitotic principal neurons of the forebrain to investigate the consequences of the loss of CBP in the adult brain. In contrast to the conventional CBP knock-out mice, which exhibit very early embryonic lethality, postnatal forebrain-restricted CBP mutants were viable and displayed no overt abnormalities. We identified the dimer of histones H2A and H2B as the preferred substrate of the histone acetyltransferase domain of CBP. Surprisingly, the loss of CBP and subsequent histone hypoacetylation had a very modest impact in the expression of a number of immediate early genes and did not affect neuronal viability. In addition, the behavioral characterization of these mice dissociated embryonic and postnatal deficits caused by impaired CBP function, narrowed down the anatomical substrate of specific behavioral defects, and confirmed the special sensitivity of object recognition memory to CBP deficiency. Overall, our study provides novel insights into RSTS etiology and clarifies some of the standing questions concerning the role of CBP and histone acetylation in activity-driven gene expression, memory formation, and neurodegeneration.


Cerebral Cortex | 2009

Inhibition of cAMP Response Element-Binding Protein Reduces Neuronal Excitability and Plasticity, and Triggers Neurodegeneration

Dragana Jancic; Mikel Lopez de Armentia; Luis M. Valor; Roman Olivares; Angel Barco

The cAMP-responsive element-binding protein (CREB) pathway has been involved in 2 major cascades of gene expression regulating neuronal function. The first one presents CREB as a critical component of the molecular switch that controls long-lasting forms of neuronal plasticity and learning. The second one relates CREB to neuronal survival and protection. To investigate the role of CREB-dependent gene expression in neuronal plasticity and survival in vivo, we generated bitransgenic mice expressing A-CREB, an artificial peptide with strong and broad inhibitory effect on the CREB family, in forebrain neurons in a regulatable manner. The expression of A-CREB in hippocampal neurons impaired L-LTP, reduced intrinsic excitability and the susceptibility to induced seizures, and altered both basal and activity-driven gene expression. In the long-term, the chronic inhibition of CREB function caused severe loss of neurons in the CA1 subfield as well as in other brain regions. Our experiments confirmed previous findings in CREB-deficient mutants and revealed new aspects of CREB-dependent gene expression in the hippocampus supporting a dual role for CREB-dependent gene expression regulating intrinsic and synaptic plasticity and promoting neuronal survival.


Nucleic Acids Research | 2013

Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.

Jose P. Lopez-Atalaya; Satomi Ito; Luis M. Valor; Eva Benito; Angel Barco

Histone deacetylase inhibitors (HDACis) have been shown to potentiate hippocampal-dependent memory and synaptic plasticity and to ameliorate cognitive deficits and degeneration in animal models for different neuropsychiatric conditions. However, the impact of these drugs on hippocampal histone acetylation and gene expression profiles at the genomic level, and the molecular mechanisms that underlie their specificity and beneficial effects in neural tissue, remains obscure. Here, we mapped four relevant histone marks (H3K4me3, AcH3K9,14, AcH4K12 and pan-AcH2B) in hippocampal chromatin and investigated at the whole-genome level the impact of HDAC inhibition on acetylation profiles and basal and activity-driven gene expression. HDAC inhibition caused a dramatic histone hyperacetylation that was largely restricted to active loci pre-marked with H3K4me3 and AcH3K9,14. In addition, the comparison of Chromatin immunoprecipitation sequencing and gene expression profiles indicated that Trichostatin A-induced histone hyperacetylation, like histone hypoacetylation induced by histone acetyltransferase deficiency, had a modest impact on hippocampal gene expression and did not affect the transient transcriptional response to novelty exposure. However, HDAC inhibition caused the rapid induction of a homeostatic gene program related to chromatin deacetylation. These results illuminate both the relationship between hippocampal gene expression and histone acetylation and the mechanism of action of these important neuropsychiatric drugs.


The EMBO Journal | 2011

CBP is required for environmental enrichment‐induced neurogenesis and cognitive enhancement

Jose P. Lopez-Atalaya; Alessandro Ciccarelli; Jose Viosca; Luis M. Valor; María Jiménez-Minchan; Santiago Canals; Maurizio Giustetto; Angel Barco

The epigenetic changes of the chromatin represent an attractive molecular substrate for adaptation to the environment. We examined here the role of CREB‐binding protein (CBP), a histone acetyltransferase involved in mental retardation, in the genesis and maintenance of long‐lasting systemic and behavioural adaptations to environmental enrichment (EE). Morphological and behavioural analyses demonstrated that EE ameliorates deficits associated to CBP deficiency. However, CBP‐deficient mice also showed a strong defect in environment‐induced neurogenesis and impaired EE‐mediated enhancement of spatial navigation and pattern separation ability. These defects correlated with an attenuation of the transcriptional programme induced in response to EE and with deficits in histone acetylation at the promoters of EE‐regulated, neurogenesis‐related genes. Additional experiments in CBP restricted and inducible knockout mice indicated that environment‐induced adult neurogenesis is extrinsically regulated by CBP function in mature granule cells. Overall, our experiments demonstrate that the environment alters gene expression by impinging on activities involved in modifying the epigenome and identify CBP‐dependent transcriptional neuroadaptation as an important mediator of EE‐induced benefits, a finding with important implications for mental retardation therapeutics.


Current Pharmaceutical Design | 2013

Lysine Acetyltransferases CBP and p300 as Therapeutic Targets in Cognitive and Neurodegenerative Disorders

Luis M. Valor; Jose Viosca; Jose P. Lopez-Atalaya; Angel Barco

Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.


The Journal of Neuroscience | 2011

cAMP Response Element-Binding Protein Is a Primary Hub of Activity-Driven Neuronal Gene Expression

Eva Benito; Luis M. Valor; María Jiménez-Minchan; Wolfgang Huber; Angel Barco

Long-lasting forms of neuronal plasticity require de novo gene expression, but relatively little is known about the events that occur genome-wide in response to activity in a neuronal network. Here, we unveil the gene expression programs initiated in mouse hippocampal neurons in response to different stimuli and explore the contribution of four prominent plasticity-related transcription factors (CREB, SRF, EGR1, and FOS) to these programs. Our study provides a comprehensive view of the intricate genetic networks and interactions elicited by neuronal stimulation identifying hundreds of novel downstream targets, including novel stimulus-associated miRNAs and candidate genes that may be differentially regulated at the exon/promoter level. Our analyses indicate that these four transcription factors impinge on similar biological processes through primarily non-overlapping gene-expression programs. Meta-analysis of the datasets generated in our study and comparison with publicly available transcriptomics data revealed the individual and collective contribution of these transcription factors to different activity-driven genetic programs. In addition, both gain- and loss-of-function experiments support a pivotal role for CREB in membrane-to-nucleus signal transduction in neurons. Our data provide a novel resource for researchers wanting to explore the genetic pathways associated with activity-regulated neuronal functions.


European Journal of Pharmacology | 2002

Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes.

Seok Choi; Se Yeon Jung; Jun-Ho Lee; Francisco Sala; Manuel Criado; Jose Mulet; Luis M. Valor; Salvador Sala; Andrew G. Engel; Seung Yeol Nah

We investigated the effects of ginsenosides, the active ingredient of ginseng, on neuronal or muscle-type nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal alpha3beta4, alpha7 or human muscle alphabetadeltavarepsilon subunits. Treatment with acetylcholine elicited an inward peak current (I(ACh)) in oocytes expressing nicotinic acetylcholine receptor subtypes. Cotreatment with ginsenoside Rg2 and acetylcholine inhibited I(ACh) in oocytes expressing with alpha3beta4 or alphabetadeltavarepsilon but not in oocytes expressing alpha7 nicotinic acetylcholine receptors. The inhibition of I(ACh) by ginsenoside Rg2 was reversible and dose-dependent. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 were 60.2+/-14.1 and 15.7+/-3.5 microM in oocytes expressing alpha3beta4 and alphabetadeltavarepsilon nicotinic acetylcholine receptors, respectively. The inhibition of I(ACh) by ginsenoside Rg2 was voltage-independent and noncompetitive. Other ginsenosides besides ginsenoside Rg2 also inhibited I(ACh) in oocytes expressing alpha3beta4 or alphabetadeltavarepsilon nicotinic acetylcholine receptors. The order of potency for the inhibition of I(ACh) was ginsenoside Rg2>Rf>Re>Rg1>Rc>Rb2>Rb1 in oocytes expressing alpha3beta4 nicotinic acetylcholine receptors and was ginsenoside Rg2>Rf>Rg1>Re>Rb1>Rc>Rb2 in oocytes expressing alphabetadeltavarepsilon nicotinic acetylcholine receptors. These results indicate that ginsenosides might regulate nicotinic acetylcholine receptors in a differential manner and this regulation might be one of the pharmacological actions of Panax ginseng.


Neuroscience Letters | 2005

Potentiation of human α4β2 neuronal nicotinic receptors by a Flustra foliacea metabolite

Francisco Sala; José Mulet; Krishna P. Reddy; José Bernal; Philip Wikman; Luis M. Valor; Lars Peters; Gabriele M. König; Manuel Criado; Salvador Sala

Abstract The effects of various Flustra foliacea metabolites on different types of human neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes were investigated. Whereas most of the compounds tested had a small blocking effect, one of them, deformylflustrabromine, selectively increased the current obtained in α4β2 receptors when co-applied with acetylcholine (ACh). The current increase was reversible and concentration-dependent. This potentiating effect was still present at saturating concentrations of acetylcholine, and no changes in single-channel conductance or reversal potential were observed, thus suggesting a modification in the gating of α4β2 receptors. Dwell time analysis of single channel records indicates that the mechanism of action of deformylflustrabromine could be both an increase of the opening rate constant and a decrease of the closing rate constant on α4β2 receptors. Thus, deformylflustrabromine may constitute an excellent starting point for the future development of related agents able to potentiate human neuronal nicotinic receptor function.


The Journal of Neuroscience | 2013

Genomic Landscape of Transcriptional and Epigenetic Dysregulation in Early Onset Polyglutamine Disease

Luis M. Valor; Deisy Guiretti; Jose P. Lopez-Atalaya; Angel Barco

Transcriptional dysregulation is an important early feature of polyglutamine diseases. One of its proposed causes is defective neuronal histone acetylation, but important aspects of this hypothesis, such as the precise genomic topography of acetylation deficits and the relationship between transcriptional and acetylation alterations at the whole-genome level, remain unknown. The new techniques for the mapping of histone post-translational modifications at genomic scale enable such global analyses and are challenging some assumptions about the role of specific histone modifications in gene expression. We examined here the genome-wide correlation of histone acetylation and gene expression defects in a mouse model of early onset Huntingtons disease. Our analyses identified hundreds of loci that were hypoacetylated for H3K9,14 and H4K12 in the chromatin of these mice. Surprisingly, few genes with altered transcript levels in mutant mice showed significant changes in these acetylation marks and vice versa. Our screen, however, identified a subset of genes in which H3K9,14 deacetylation and transcriptional dysregulation concur. Genes in this group were consistently affected in different brain areas, mouse models, and tissue from patients, which suggests a role in the etiology of this pathology. Overall, the combination of histone acetylation and gene expression screenings demonstrates that histone deacetylation and transcriptional dysregulation are two early, largely independent, manifestations of polyglutamine disease and suggests that additional epigenetic marks or mechanisms are required for explaining the full range of transcriptional alterations associated with this disorder.


Journal of Biological Chemistry | 1999

Multiple Functional Sp1 Domains in the Minimal Promoter Region of the Neuronal Nicotinic Receptor α5 Subunit Gene

Antonio Campos-Caro; Carmen Carrasco-Serrano; Luis M. Valor; Salvador Viniegra; Juan J. Ballesta; Manuel Criado

The α5 subunit is a component of the neuronal nicotinic acetylcholine receptors, which are probably involved in the activation step of the catecholamine secretion process in bovine adrenomedullary chromaffin cells. The promoter of the gene coding for this subunit was isolated, and its proximal region was characterized, revealing several GC boxes located close to the site of transcription initiation (from −111 to −40). Deletion analysis and transient transfections showed that a 266-base pair region (−111 to +155) gave rise to ∼77 and 100% of the maximal transcriptional activity observed in chromaffin and SHSY-5Y neuroblastoma cells, respectively. Site-directed mutagenesis of five different GC motifs indicated that all of them contribute to the activity of the α5 gene, but in a different way, depending on the type of transfected cell. Thus, in SHSY-5Y cells, alteration of the most promoter-proximal of the GC boxes decreased α5 promoter activity by ∼50%, whereas single mutations of the other GC boxes had no effect. In chromaffin cells, by contrast, modification of any of the GC boxes produced a similar decrease in promoter activity (50–69%). In both cell types, however, activity was almost abolished when four GC boxes were suppressed simultaneously. Electrophoretic mobility shift assays using nuclear extracts from either chromaffin or SHSY-5Y cells showed the specific binding of Sp1 protein to fragment −111 to −27. Binding of Sp1 to the GC boxes was also demonstrated by DNase I footprint analysis. This study suggests that the general transcription factor Sp1 plays a dominant role in α5 subunit expression, as has also been demonstrated previously for α3 and β4 subunits. Since these three subunits have their genes tightly clustered and are expressed in chromaffin cells, probably as components of the same receptor subtype, we propose that Sp1 constitutes the key factor of a regulatory mechanism common to the three subunits.

Collaboration


Dive into the Luis M. Valor's collaboration.

Top Co-Authors

Avatar

Manuel Criado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Sala

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José Mulet

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Salvador Sala

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jose P. Lopez-Atalaya

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Deisy Guiretti

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan J. Ballesta

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carmen Carrasco-Serrano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José A. Ortiz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge