Luiz Gustavo Dubois
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Luiz Gustavo Dubois.
Life Sciences | 2011
Tercia Alves; Flavia Regina Souza Lima; Suzana Assad Kahn; Denise S. Lobo; Luiz Gustavo Dubois; Rossana C. Soletti; Helena L. Borges; Vivaldo Moura Neto
Glioblastomas (GBMs) are considered to be one of the deadliest human cancers, characterized by a high proliferative rate, aggressive invasiveness and insensitivity to radio- and chemotherapy, as well as a short patient survival period. Moreover, GBMs are among the most vascularized and invasive cancers in humans. Angiogenesis in GBMs is correlated with the grade of malignancy and is inversely correlated with patient survival. One of the first steps in tumor invasions is migration. GBM cells have the ability to infiltrate and disrupt physical barriers such as basement membranes, extracellular matrix and cell junctions. The invasion process includes the overexpression of several members of a super-family of zinc-based proteinases, the Metzincin, in particular a sub-group, metalloproteinases. Another interesting aspect is that, inside the GBM tissue, there are up to 30% of microglia or macrophages. However, little is known about the immune performance and interactions of the microglia with GBMs. These singular properties of GBMs will be described here. A sub-population of cells with stem-like properties may be the source of tumors since, apparently, GBM stem cells (GSCs) are highly resistant to current cancer treatments. These cancer therapies, while killing the majority of tumor cells, ultimately fail in GBM treatment because they do not eliminate GSCs, which survive to regenerate new tumors. Finally, GBM patient prognostic has shown little improvement in decades. In this context, we will discuss how the membrane-acting toxins called cytolysins can be a potential new tool for GBM treatment.
Frontiers in Cellular Neuroscience | 2014
Luiz Gustavo Dubois; Loraine Campanati; Cassia Righy; Isabella D’Andrea-Meira; Tania Cristina Leite de Sampaio e Spohr; Isabel Porto-Carreiro; Cláudia Maria Pereira; Joana Balça-Silva; Suzana Assad Kahn; Marcos F. DosSantos; Marcela de Almeida Rabello Oliveira; Adriana Ximenes-da-Silva; Maria Celeste Lopes; Eduardo Faveret; Emerson Leandro Gasparetto; Vivaldo Moura-Neto
Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected.
Experimental Cell Research | 2011
Tercia Rodrigues Alves; Anna Carolina Carvalho da Fonseca; Sara Santana Nunes; Aline Oliveira da Silva; Luiz Gustavo Dubois; Jane Faria; Suzana Assad Kahn; Nathan B. Viana; Jorge Marcondes; Chantal Legrand; Vivaldo Moura-Neto; Verônica Morandi
The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached and died by anoikis (50 to 80%) after 24h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.
Embo Molecular Medicine | 2016
Suzana Assad Kahn; Silvia Lima Costa; Sharareh Gholamin; Ryan T. Nitta; Luiz Gustavo Dubois; Marie Fève; Maria Zeniou; Paulo Lucas Cerqueira Coelho; Elias A. El-Habr; Josette Cadusseau; Pascale Varlet; Siddhartha Mitra; Bertrand Devaux; Marie-Claude Kilhoffer; Samuel H. Cheshier; Vivaldo Moura-Neto; Jacques Haiech; Marie-Pierre Junier; Hervé Chneiweiss
A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor‐initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1‐ and α2B‐adrenergic receptor antagonist, as the most potent inducer of patient‐derived glioblastoma‐initiating cell death. Prazosin triggered apoptosis of glioblastoma‐initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient‐derived glioblastoma‐initiating cells, and increased survival of glioblastoma‐bearing mice. We found that prazosin acted in glioblastoma‐initiating cells independently from adrenergic receptors. Its off‐target activity occurred via a PKCδ‐dependent inhibition of the AKT pathway, which resulted in caspase‐3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin‐treated glioblastoma‐initiating cells, as well as prazosin‐induced apoptosis. Based on these data, we conclude that prazosin, an FDA‐approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ‐dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.
Cellular Oncology | 2017
Diana Matias; Joana Balça-Silva; Luiz Gustavo Dubois; Bruno Pontes; Valéria Pereira Ferrer; Luciane Rosário; Anália do Carmo; Juliana Echevarria-Lima; Ana Bela Sarmento-Ribeiro; Maria Celeste Lopes; Vivaldo Moura-Neto
PurposeGlioblastomas (GBM) comprise 17% of all primary brain tumors. These tumors are extremely aggressive due to their infiltrative capacity and chemoresistance, with glial-to-mesenchymal transition (GMT) proteins playing a prominent role in tumor invasion. One compound that has recently been used to reduce the expression of these proteins is shikonin (SHK), a naphthoquinone with anti-tumor properties. Temozolomide (TMZ), the most commonly used chemotherapeutic agent in GBM treatment, has so far not been studied in combination with SHK. Here, we investigated the combined effects of these two drugs on the proliferation and motility of GBM-derived cells.MethodsThe cytotoxic and proliferative effects of SHK and TMZ on human GBM-derived cells were tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Ki67 staining and BrdU incorporation assays. The migration capacities of these cells were evaluated using a scratch wound assay. The expression levels of β3 integrin, metalloproteinases (MMPs) and GMT-associated proteins were determined by Western blotting and immunocytochemistry.ResultsWe found that GBM-derived cells treated with a combination of SHK and TMZ showed decreases in their proliferation and migration capacities. These decreases were followed by the suppression of GMT through a reduction of β3 integrin, MMP-2, MMP-9, Slug and vimentin expression via inactivation of PI3K/AKT signaling.ConclusionFrom our results we conclude that dual treatment with SHK and TMZ may constitute a powerful new tool for GBM treatment by reducing therapy resistance and tumor recurrence.
PLOS ONE | 2015
Fabio A. Mendes; Juliana M. Coelho Aguiar; Suzana Assad Kahn; Alice H. Reis; Luiz Gustavo Dubois; Luciana Romão; Lais S. S. Ferreira; Hervé Chneiweiss; Vivaldo Moura Neto; José G. Abreu
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.
BMC Cancer | 2014
Celina Garcia; Luiz Gustavo Dubois; Anna L.R. Xavier; Luiz Henrique Geraldo; Anna Carolina Carvalho da Fonseca; Ana Helena Pereira Correia; Fernanda Meirelles; Grasiella M. Ventura; Luciana Romão; Nathalie Henriques Silva Canedo; Jorge Marcondes de Souza; João R. L. Menezes; Vivaldo Moura-Neto; Fernanda Tovar-Moll; Flavia Regina Souza Lima
BackgroundGlioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice.MethodsXenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses.ResultsOur data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood–brain barrier disruption.ConclusionsThis study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.
Translational Oncology | 2017
Joana Balça-Silva; Diana Matias; Luiz Gustavo Dubois; Brenno Carneiro; Anália do Carmo; Henrique Girão; Fernanda Meireles Ferreira; Valéria Pereira Ferrer; Leila Chimelli; Paulo Niemeyer Filho; Hermínio Tão; Olinda Rebelo; Marcos Barbosa; Ana Bela Sarmento-Ribeiro; Maria Celeste Lopes; Vivaldo Moura-Neto
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.
Oncology Reports | 2017
Joana Balça-Silva; Diana Matias; Anália do Carmo; Luiz Gustavo Dubois; Ana Cristina Gonçalves; Henrique Girão; Nathalie Henriques Silva Canedo; Ana Helena Pereira Correia; Jorge Marcondes de Souza; Ana Bela Sarmento-Ribeiro; Maria Celeste Lopes; Vivaldo Moura-Neto
Glioblastoma (GBM) is a grade IV astrocytoma. GBM patients show resistance to chemotherapy such as temozolomide (TMZ), the gold standard treatment. In order to simulate the molecular mechanisms behind the different chemotherapeutic responses in GBM patients we compared the cellular heterogeneity and chemotherapeutic resistance mechanisms in different GBM cell lines. We isolated and characterized a human GBM cell line obtained from a GBM patient, named GBM11. We studied the GBM11 behaviour when treated with Tamoxifen (TMX) that, among other functions, is a protein kinase C (PKC) inhibitor, alone and in combination with TMZ in comparison with the responses of U87 and U118 human GBM cell lines. We evaluated the cell death, cell cycle arrest and cell proliferation, mainly through PKC expression, by flow cytometry and western blot analysis and, ultimately, cell migration capability and F-actin filament disorganization by fluorescence microscopy. We demonstrated that the constitutive activation of p-PKC seems to be one of the main metabolic implicated on GBM malignancy. Despite of its higher resistance, possibly due to the overexpression of P-glycoprotein and stem-like cell markers, GBM11 cells presented a subtle different chemotherapeutic response compared to U87 and U118 cells. The GBM11, U87, U118 cell lines show subtle molecular differences, which clearly indicate the characterization of GBM heterogeneity, one of the main reasons for tumor resistance. The adding of cellular heterogeneity in molecular behaviour constitutes a step closer in the understanding of resistant molecular mechanisms in GBM, and can circumvents the eventual impaired therapy.
Molecular Neurobiology | 2018
Diana Matias; Luiz Gustavo Dubois; Bruno Pontes; Luciane Rosário; Valéria Pereira Ferrer; Joana Balça-Silva; Anna Carolina Carvalho da Fonseca; Lucy Wanjiku Macharia; Luciana Romão; Tania Cristina Leite de Sampaio e Spohr; Leila Chimelli; Paulo Niemeyer Filho; Maria Celeste Lopes; José G. Abreu; Flavia Regina Souza Lima; Vivaldo Moura-Neto
Glioblastoma is an extremely aggressive and deadly brain tumor known for its striking cellular heterogeneity and capability to communicate with microenvironment components, such as microglia. Microglia-glioblastoma interaction contributes to an increase in tumor invasiveness, and Wnt signaling pathway is one of the main cascades related to tumor progression through changes in cell migration and invasion. However, very little is known about the role of canonical Wnt signaling during microglia-glioblastoma crosstalk. Here, we show for the first time that Wnt3a is one of the factors that regulate interactions between microglia and glioblastoma cells. Wnt3a activates the Wnt/β-catenin signaling of both glioblastoma and microglial cells. Glioblastoma-conditioned medium not only induces nuclear translocation of microglial β-catenin but also increases microglia viability and proliferation as well as Wnt3a, cyclin-D1, and c-myc expression. Moreover, glioblastoma-derived Wnt3a increases microglial ARG-1 and STI1 expression, followed by an upregulation of IL-10 mRNA levels, and a decrease in IL1β gene expression. The presence of Wnt3a in microglia-glioblastoma co-cultures increases the formation of membrane nanotubes accompanied by changes in migration capability. In vivo, tumors formed from Wnt3a-stimulated glioblastoma cells presented greater microglial infiltration and more aggressive characteristics such as growth rate than untreated tumors. Thus, we propose that Wnt3a belongs to the arsenal of factors capable of stimulating the induction of M2-like phenotype on microglial cells, which contributes to the poor prognostic of glioblastoma, reinforcing that Wnt/β-catenin pathway can be a potential therapeutic target to attenuate glioblastoma progression.
Collaboration
Dive into the Luiz Gustavo Dubois's collaboration.
Tania Cristina Leite de Sampaio e Spohr
Federal University of Rio de Janeiro
View shared research outputs