Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivaldo Moura-Neto is active.

Publication


Featured researches published by Vivaldo Moura-Neto.


Biochimica et Biophysica Acta | 2012

Glioblastoma: therapeutic challenges, what lies ahead.

Flavia Regina Souza Lima; Suzana Assad Kahn; Rossana C. Soletti; Deborah Biasoli; Tercia Alves; Anna Carolina Carvalho da Fonseca; Celina Garcia; Luciana Romão; José M. Brito; Rosenilde Carvalho Holanda-Afonso; Jane Faria; Helena L. Borges; Vivaldo Moura-Neto

Glioblastoma (GBM) is one of the most aggressive human cancers. Despite current advances in multimodality therapies, such as surgery, radiotherapy and chemotherapy, the outcome for patients with high grade glioma remains fatal. The knowledge of how glioma cells develop and depend on the tumor environment might open opportunities for new therapies. There is now a growing awareness that the main limitations in understanding and successfully treating GBM might be bypassed by the identification of a distinct cell type that has defining properties of somatic stem cells, as well as cancer-initiating capacity - brain tumor stem cells, which could represent a therapeutic target. In addition, experimental studies have demonstrated that the combination of antiangiogenic therapy, based on the disruption of tumor blood vessels, with conventional chemotherapy generates encouraging results. Emerging reports have also shown that microglial cells can be used as therapeutic vectors to transport genes and/or substances to the tumor site, which opens up new perspectives for the development of GBM therapies targeting microglial cells. Finally, recent studies have shown that natural toxins can be conjugated to drugs that bind to overexpressed receptors in cancer cells, generating targeted-toxins to selectively kill cancer cells. These targeted-toxins are highly effective against radiation- and chemotherapy-resistant cancer cells, making them good candidates for clinical trials in GBM patients. In this review, we discuss recent studies that reveal new possibilities of GBM treatment taking into account cancer stem cells, angiogenesis, microglial cells and drug delivery in the development of new targeted-therapies.


BMC Cancer | 2010

CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

Cristina Patru; Luciana Romão; Pascale Varlet; Laure Coulombel; Eric Raponi; Josette Cadusseau; François Renault-Mihara; Cécile Thirant; Nadine Léonard; Alain Berhneim; Maria Mihalescu-Maingot; Jacques Haiech; Ivan Bièche; Vivaldo Moura-Neto; Catherine Daumas-Duport; Marie-Pierre Junier; Hervé Chneiweiss

BackgroundTumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies.MethodsWe screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas.ResultsA long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide.ConclusionsOur results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.


Infection and Immunity | 2003

Soluble Factors Released by Toxoplasma gondii-Infected Astrocytes Down-Modulate Nitric Oxide Production by Gamma Interferon-Activated Microglia and Prevent Neuronal Degeneration

Claudia Rozenfeld; Rodrigo Martinez; Rodrigo T. Figueiredo; Marcelo T. Bozza; Flavia Regina Souza Lima; Ana L.A. Pires; Patrícia M.R. e Silva; Adriana Bonomo; Joseli Lannes-Vieira; Wanderley de Souza; Vivaldo Moura-Neto

ABSTRACT The maintenance of a benign chronic Toxoplasma gondii infection is mainly dependent on the persistent presence of gamma interferon (IFN-γ) in the central nervous system (CNS). However, IFN-γ-activated microglia are paradoxically involved in parasitism control and in tissue damage during a broad range of CNS pathologies. In this way, nitric oxide (NO), the main toxic metabolite produced by IFN-γ-activated microglia, may cause neuronal injury during T. gondii infection. Despite the potential NO toxicity, neurodegeneration is not a common finding during chronic T. gondii infection. In this work, we describe a significant down-modulation of NO production by IFN-γ-activated microglia in the presence of conditioned medium of T. gondii-infected astrocytes (CMi). The inhibition of NO production was paralleled with recovery of neurite outgrowth when neurons were cocultured with IFN-γ-activated microglia in the presence of CMi. Moreover, the modulation of NO secretion and the neuroprotective effect were shown to be dependent on prostaglandin E2 (PGE2) production by T. gondii-infected astrocytes and autocrine secretion of interleukin-10 (IL-10) by microglia. These events were partially eliminated when infected astrocytes were treated with aspirin and cocultures were treated with anti-IL-10 neutralizing antibodies and RP-8-Br cyclic AMP (cAMP), a protein kinase A inhibitor. Further, the modulatory effects of CMi were mimicked by the presence of exogenous PGE2 and by forskolin, an adenylate cyclase activator. Altogether, these data point to a T. gondii-triggered regulatory mechanism involving PGE2 secretion by astrocytes and cAMP-dependent IL-10 secretion by microglia. This may reduce host tissue inflammation, thus avoiding neuron damage during an established Th1 protective immune response.


Frontiers in Cellular Neuroscience | 2014

Gliomas and the vascular fragility of the blood brain barrier

Luiz Gustavo Dubois; Loraine Campanati; Cassia Righy; Isabella D’Andrea-Meira; Tania Cristina Leite de Sampaio e Spohr; Isabel Porto-Carreiro; Cláudia Maria Pereira; Joana Balça-Silva; Suzana Assad Kahn; Marcos F. DosSantos; Marcela de Almeida Rabello Oliveira; Adriana Ximenes-da-Silva; Maria Celeste Lopes; Eduardo Faveret; Emerson Leandro Gasparetto; Vivaldo Moura-Neto

Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected.


American Journal of Pathology | 2005

Toxoplasma gondii Prevents Neuron Degeneration by Interferon-γ-Activated Microglia in a Mechanism Involving Inhibition of Inducible Nitric Oxide Synthase and Transforming Growth Factor-β1 Production by Infected Microglia

Claudia Rozenfeld; Rodrigo Martinez; Sergio Henrique Seabra; Celso Sant'Anna; J. Gabriel R. Gonçalves; Marcelo T. Bozza; Vivaldo Moura-Neto; Wanderley de Souza

Interferon (IFN)-gamma, the main cytokine responsible for immunological defense against Toxoplasma gondii, is essential in all infected tissues, including the central nervous system. However, IFN-gamma-activated microglia may cause tissue injury through production of toxic metabolites such as nitric oxide (NO), a potent inducer of central nervous system pathologies related to inflammatory neuronal disturbances. Despite potential NO toxicity, neurodegeneration is not commonly found during chronic T. gondii infection. In this study, we describe decreased NO production by IFN-gamma-activated microglial cells infected by T. gondii. This effect involved strong inhibition of iNOS expression in IFN-gamma-activated, infected microglia but not in uninfected neighboring cells. The inhibition of NO production and iNOS expression were parallel with recovery of neurite outgrowth when neurons were co-cultured with T. gondii-infected, IFN-gamma-activated microglia. In the presence of transforming growth factor (TGF)-beta1-neutralizing antibodies, the beneficial effect of the parasite on neurons was abrogated, and NO production reverted to levels similar to IFN-gamma-activated uninfected co-cultures. In addition, we observed Smad-2 nuclear translocation, a hallmark of TGF-beta1 downstream signaling, in infected microglial cultures, emphasizing an autocrine effect restricted to infected cells. Together, these data may explain a neuropreservation pattern observed during immunocompetent host infection that is dependent on T. gondii-triggered TGF-beta1 secretion by infected microglia.


PLOS ONE | 2013

Membrane Elastic Properties and Cell Function

Bruno Pontes; Yareni A. Ayala; Anna Carolina Carvalho da Fonseca; Luciana Romão; Racκele F. Amaral; Leonardo T. Salgado; Flavia Regina Souza Lima; Marcos Farina; Nathan B. Viana; Vivaldo Moura-Neto; H. Moysés Nussenzveig

Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.


Neuroscience | 2012

Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells.

A.C.C. da Fonseca; Luciana Romão; Rackele Amaral; S. Assad Kahn; Denise S. Lobo; Sheila Cristina de Souza Martins; J. Marcondes de Souza; Vivaldo Moura-Neto; Flavia Regina Souza Lima

Microglial activation is a key event in the progression and infiltration of tumors. We have previously demonstrated that the co-chaperone stress inducible protein 1 (STI1), a cellular prion protein (PrP(C)) ligand, promotes glioblastoma (GBM) proliferation. In the present study, we examined the influence of microglial STI1 in the growth and invasion of the human glioblastoma cell line GBM95. We demonstrated that soluble factors secreted by microglia into the culture medium (microglia conditioned medium; MG CM) caused a two-fold increase in the proliferation of GBM95 cells. This effect was reversed when STI1 was removed from the MG CM. In this context, we have shown that microglial cells synthesize and secrete STI1. Interestingly, no difference was observed in proliferation rates when GBM cells were maintained in MG CM or MG CM containing an anti-PrP(C) neutralizing antibody. Moreover, rec STI1 and rec STI1(Δ230-245), which lack the PrP(C) binding site, both promoted similar levels of GBM95 proliferation. In the migration assays, MG CM favored the migration of GBM95 cells, but migration failed when STI1 was removed from the MG CM. We detected metalloproteinase 9 (MMP-9) activity in the MG CM, and when cultured microglia were treated with an anti-STI1 antibody, MMP-9 activity decreased. Our results suggest that STI1 is secreted by microglia and favors tumor growth and invasion through the participation of MMP-9 in a PrP(C)-independent manner.


Anti-Cancer Drugs | 2008

Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells

Rossana C. Soletti; Giselle Pinto de Faria; Javier Vernal; Hernán Terenzi; Gregor Anderluh; Helena L. Borges; Vivaldo Moura-Neto; Nelson H. Gabilan

The search for new drugs and treatment approaches is of particular importance for glioblastomas (GBMs), as with other types of malignant gliomas, as they are lethal without the available medical care. Current anticancer cocktails have failed to prolong survival beyond 1 year, in part owing to the natural resistance of GBM cells and to the toxic side effects of the available drugs. In many organisms, cell death can be induced by cytolysins, which are proteins that can form pores in biological membranes. Perhaps by facilitating drugs to enter into the cytosol, cytolysins might be used to increase the efficacy of conventional anticancer agents. Here, the cytotoxicity of two sea anemone pore-forming cytolysins, toxin Bc2, and equinatoxin (EqTx-II) were investigated. Toxin Bc2 and EqTx-II were cytotoxic against human U87 and A172 GBM cell lines either wild type or p53 mutant, a tumor suppressor frequently mutated in malignant gliomas. Moreover, noncytotoxic concentrations of Bc2 or EqTx-II potentiated the cytotoxicity induced by low dose concentrations of all classical chemotherapeutics agents tested: cytosine arabinoside, doxorubicin, and vincristine. In comparison with the cytotoxicity induced by each of these classical anticancer drugs alone, 10–300-fold less of the therapeutic drug was needed when combined with the cytolysins. These results are promising, since lower concentrations of chemotherapeutic drugs could reduce the adverse effects of chemotherapy.


Chemico-Biological Interactions | 2010

Peptide gomesin triggers cell death through L-type channel calcium influx, MAPK/ERK, PKC and PI3K signaling and generation of reactive oxygen species.

Rossana C. Soletti; Laura del Barrio; Sirlei Daffre; Antonio Miranda; Helena L. Borges; Vivaldo Moura-Neto; Manuela G. López; Nelson H. Gabilan

Gomesin is an antimicrobial peptide isolated from hemocytes of a common Brazilian tarantula spider named Acanthoscurria gomesiana. This peptide exerts antitumor activity in vitro and in vivo by an unknown mechanism. In this study, the cytotoxic mechanism of gomesin in human neuroblastoma SH-SY5Y and rat pheochromocytoma PC12 cells was investigated. Gomesin induced necrotic cell death and was cytotoxic to SH-SY5Y and PC12 cells. The peptide evoked a rapid and transient elevation of intracellular calcium levels in Fluo-4-AM loaded PC12 cells, which was inhibited by nimodipine, an L-type calcium channel blocker. Preincubation with nimodipine also inhibited cell death induced by gomesin in SH-SY5Y and PC12 cells. Gomesin-induced cell death was prevented by the pretreatment with MAPK/ERK, PKC or PI3K inhibitors, but not with PKA inhibitor. In addition, gomesin generated reactive oxygen species (ROS) in SH-SY5Y cells, which were blocked with nimodipine and MAPK/ERK, PKC or PI3K inhibitors. Taken together, these results suggest that gomesin could be a useful anticancer agent, which mechanism of cytotoxicity implicates calcium entry through L-type calcium channels, activation of MAPK/ERK, PKC and PI3K signaling as well as the generation of reactive oxygen species.


Journal of Cerebral Blood Flow and Metabolism | 2009

On the fate of extracellular hemoglobin and heme in brain

Flávio Alves Lara; Suzana Assad Kahn; Anna Da Fonseca; Carlomagno Pacheco Bahia; João Pc Pinho; Aurélio V. Graça-Souza; Jean Chistophe Houzel; Pedro L. Oliveira; Vivaldo Moura-Neto; Marcus F. Oliveira

Intracerebral hemorrhage (ICH) is a major cause of disability in adults worldwide. The pathophysiology of this syndrome is complex, involving both inflammatory and redox components triggered by the extravasation of blood into the cerebral parenchyma. Hemoglobin, heme, and iron released therein seem be important in the brain damage observed in ICH. However, there is a lack of information concerning hemoglobin traffic and metabolism in brain cells. Here, we investigated the fate of hemoglobin and heme in cultured neurons and astrocytes, as well as in the cortex of adult rats. Hemoglobin was made traceable by conjugation to Alexa 488, whereas a fluorescent heme analogue (tin-protoporphyrin IX) was prepared to allow heme tracking. Using fluorescence microscopy we observed that neurons were more efficient in uptake hemoglobin and heme than astrocytes. Exposure of cortical neurons to hemoglobin or heme resulted in an oxidative stress condition. Viability assays showed that neurons were more susceptible to both hemoglobin and heme toxicity than astrocytes. Together, these results show that neurons, rather than astrocytes, preferentially take up hemoglobin-derived products, indicating that these cells are actively involved in the ICH-associated brain damage.

Collaboration


Dive into the Vivaldo Moura-Neto's collaboration.

Top Co-Authors

Avatar

Luciana Romão

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Flavia Regina Souza Lima

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Diana Matias

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luiz Gustavo Dubois

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Bruno Pontes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Suzana Assad Kahn

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge