Lukas Durdina
Swiss Federal Laboratories for Materials Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lukas Durdina.
Aerosol Science and Technology | 2015
Prem Lobo; Lukas Durdina; Gregory J. Smallwood; Theodor Rindlisbacher; Frithjof Siegerist; Elizabeth Black; Zhenhong Yu; A. A. Mensah; Donald E. Hagen; Richard C. Miake-Lye; Kevin A. Thomson; Benjamin T. Brem; Joel C. Corbin; Manuel Abegglen; B. Sierau; Philip D. Whitefield; Jing Wang
This study reports the first of a kind data on aircraft engine non-volatile particulate matter (nvPM) number- and mass-based emissions using standardized systems. Two compliant sampling and measurement systems operated by Missouri University of Science and Technology (Missouri S&T) and Empa were evaluated during the Aviation - Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 campaign at the SR Technics facilities in Zürich, Switzerland, in November 2012. The Missouri S&T and Empa systems were compared during a series of dedicated engine tests using a CFM56-5B4/2P engine source, and maintenance engine testing using CFM56-7B24/3 and PW4168A engine sources at a range of engine operating conditions. These two compliant systems were found to agree within 6% of each other in terms of nvPM number-based emissions, and within 15% for nvPM mass-based emissions. For the three engine sources studied, at several engine power conditions the mass instruments approached their limit of detection, resulting in high measurement uncertainties. Ancillary instrumentation was used to determine PM size distributions, chemical composition, and effective density from mass-mobility experiments. Particle geometric mean mobility diameter ranged 20–45 nm, and geometric standard deviation varied from 1.55 to 1.9 for the three engine types studied. The fraction of PM organic content measured in the emissions from the CFM56-5B4/2P engine was ∼4% while the size-dependent particle effective density was parameterized with a mass-mobility exponent of 2.57 and a pre-factor of 0.606. Results of this study will contribute to the development of the new nvPM emissions certification standard and emissions inventories from commercial aviation operations.
Environmental Science & Technology | 2015
Benjamin T. Brem; Lukas Durdina; Siegerist F; Beyerle P; Bruderer K; T. Rindlisbacher; Rocci-Denis S; Andac Mg; Zelina J; Penanhoat O; Jing Wang
Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.
Environmental Science & Technology | 2014
Anthi Liati; Benjamin T. Brem; Lukas Durdina; Melanie Vögtli; Yadira Arroyo Rojas Dasilva; Panayotis Dimopoulos Eggenschwiler; Jing Wang
The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.
Journal of Propulsion and Power | 2015
Tyler J. Johnson; Jason S. Olfert; John P.R. Symonds; Mark P. Johnson; Theo Rindlisbacher; Jacob Swanson; Adam M. Boies; Kevin A. Thomson; Greg Smallwood; David Walters; Yura Alexander Sevcenco; Andrew Philip Crayford; Ramin Dastanpour; Steven N. Rogak; Lukas Durdina; Yeon Kyoung Bahk; Benjamin T. Brem; Jing Wang
A centrifugal particle mass analyzer and a modified differential mobility spectrometer were used to measure the mass and mobility of particulate matter emitted by CFM56-5B4/2P, CFM56-7B26/3, and PW4000-100 gas turbine engine sources. The mass-mobility exponent of the particulate matter from the CFM56-5B4/2P engine ranged from 2.68 to 2.82, whereas the effective particle densities varied from 600 to 1250 kg/m3, depending on the static engine thrust and sampling methodology used. The effective particle densities from the CFM56-7B26/3 and PW4000-100 engines also fell within this range. The sample was conditioned with or without a catalytic stripper and with or without dilution, which caused the effective density to change, indicating the presence of condensed semivolatile material on the particles. Variability of the determined effective densities across different engine thrusts, based on the scattering about the line of best fit, was lowest for the diluted samples and highest for the undiluted sample without a catalytic stripper. This variability indicates that the relative amount of semivolatile material produced was engine thrust dependent. It was found that the nonvolatile particulate matter, effective particle density (in kilograms per cubic meter) of the CFM56-5B4/2P engine at relative thrusts below 30% could be approximated using the particle mobility diameter (dme in meters) with 11.92d(2.76−3)me.
Aerosol Science and Technology | 2016
Lukas Durdina; Prem Lobo; Max B. Trueblood; Elizabeth Black; Steven C. Achterberg; Donald E. Hagen; Benjamin T. Brem; Jing Wang
ABSTRACT Soot is a climate forcer and a dangerous air pollutant that has been increasingly regulated. In aviation, regulatory measurements of soot mass concentration in the exhaust of aircraft turbine engines are to be based on measurements of black carbon (BC) calibrated to elemental carbon (EC) content of diffusion flame soot. The calibration soot must currently meet only one criterion: minimum EC to total carbon (TC) ratio of 0.8. However, not including soot properties other than the EC/TC ratio may potentially lead to discrepancies between different BC measurements. We studied the response of two instruments, the AVL Micro-Soot Sensor (MSS) and the Artium Laser-Induced Incandescence 300 (LII), to soot from two miniature combustion aerosol standard (mini-CAST) burners. By changing the air-fuel ratio, premixing nitrogen into the fuel, and using a catalytic stripper to remove volatile compounds, we produced a wide range of particle morphologies and EC contents. As the EC content decreased, both the instruments underreported the EC mass, but the LII diverged more severely. Upon closer investigation of eight conditions with EC/TC > 0.8, the LII underreporting was found independent of primary particle size, but increased with decreasing geometric mean diameter of the soot agglomerates. As the geometric mean diameter decreased from 160 nm to 50 nm, the differences between the LII and MSS increased from 15% to 50%. The results suggest that in addition to EC content, calibration procedures for the regulatory BC measurements may need to take particle size distributions into account.
Environmental Science & Technology | 2017
Lukas Durdina; Benjamin T. Brem; Ari Setyan; Frithjof Siegerist; Theo Rindlisbacher; Jing Wang
Aviation is a substantial and a fast growing emissions source. Besides greenhouse gases, aircraft engines emit black carbon (BC), a climate forcer and air pollutant. Aviation BC emissions have been regulated and estimated through exhaust smoke visibility (smoke number). Their impacts are poorly understood because emission inventories lack representative data. Here, we measured BC mass and number-based emissions of the most popular airliners engines according to a new emission standard. We used a calibrated engine performance model to determine the emissions on the ground, at cruise altitude, and over entire flight missions. Compared to previous estimates, we found up to a factor of 4 less BC mass emitted from the standardized landing and takeoff cycle and up to a factor of 40 less during taxiing. However, the taxi phase accounted for up to 30% of the total BC number emissions. Depending on the fuel composition and flight distance, the mass and number-based emission indices (/kg fuel burned) were 6.2-14.7 mg and 2.8 × 1014 - 8.7 × 1014, respectively. The BC mass emissions per passenger-km were similar to gasoline vehicles, but the number-based emissions were relatively higher, comparable to old diesel vehicles. This study provides representative data for models and will lead to more accurate assessments of environmental impacts of aviation.
Aerosol Science and Technology | 2017
Meghdad Saffaripour; Li-Lin Tay; Kevin A. Thomson; Gregory J. Smallwood; Benjamin T. Brem; Lukas Durdina; Mark P. Johnson
ABSTRACT To obtain reliable mass concentrations of solid particulate matter (PM) in the exhaust emissions from engines using optical instruments, it is essential that the solid PM used for instrument calibration has similar optical properties to the solid PM emitted from the engines being tested. The solid PM emitted from combustion engines is predominantly soot. The optical properties of soot are dictated by its chemical structure, size, and morphology. In this work, the chemical bond structure, primary-particle diameters, aggregate sizes, and morphological parameters of the soot emitted from two laboratory soot generators, widely used for calibrating instruments, are compared to those of soot emitted from three aircraft turbine engines using Raman spectroscopy and transmission electron microscopy. The Raman spectral properties, size, and morphology of soot emitted from aircraft engines are distinctly different from the properties of soot emitted from the soot generators operating under globally near-stoichiometric and fuel-rich conditions. These differences can be attributed to the variations in the size and orientation of the graphitic crystallites, amorphous-carbon content, amount of polyacetylene compounds, deposition of organic material, and extent of oxidation. Conversely, general agreement is observed between the chemical structure, size, and morphology of soot emitted from aircraft engines and the soot emitted from the soot generators operating at globally fuel-lean conditions. The findings of this investigation can be useful for identifying suitable soot particles for the calibration of instruments to measure the mass concentration of solid PM emissions from engines, and for other types of soot. Copyright
Environmental Science & Technology | 2017
Dogushan Kilic; Benjamin T. Brem; Felix Klein; Imad El-Haddad; Lukas Durdina; Theo Rindlisbacher; Ari Setyan; Rujin Huang; Jing Wang; Jay G. Slowik; Urs Baltensperger; André S. H. Prévôt
Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of ∼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.
Atmospheric Environment | 2014
Lukas Durdina; Benjamin T. Brem; Manuel Abegglen; Prem Lobo; Theo Rindlisbacher; Kevin A. Thomson; Gregory J. Smallwood; Donald E. Hagen; B. Sierau; Jing Wang
International Journal of Heat and Mass Transfer | 2014
Lukas Durdina; Jan Jedelsky; Miroslav Jicha
Collaboration
Dive into the Lukas Durdina's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs