Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Mayr is active.

Publication


Featured researches published by Lukas Mayr.


Catalysis Science & Technology | 2015

Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts

Astrid Wolfbeisser; Bernhard Klötzer; Lukas Mayr; Raffael Rameshan; Dmitry Zemlyanov; Johannes Bernardi; Karin Föttinger; Günther Rupprechter

We explored the surface chemistry of methane on Cu-promoted Ni–ZrO2 catalysts and observed a limited stability of the CuNi alloy under relevant reaction conditions.


Chemcatchem | 2013

From Oxide-Supported Palladium to Intermetallic Palladium Phases: Consequences for Methanol Steam Reforming

Harald Lorenz; Christoph Rameshan; Thomas Bielz; Norbert Memmel; Werner Stadlmayr; Lukas Mayr; Qian Zhao; Soipatta Soisuwan; Bernhard Klötzer; Simon Penner

This Minireview summarizes the fundamental results of a comparative inverse‐model versus real‐model catalyst approach toward methanol steam reforming (MSR) on the highly CO2‐selective H2‐reduced states of supported Pd/ZnO, Pd/Ga2O3, and Pd/In2O3 catalysts. Our model approach was extended to the related Pd/GeO2 and Pd/SnO2 systems, which showed previously unknown MSR performance. This approach allowed us to determine salient CO2‐selectivity‐guiding structural and electronic effects on the molecular level, to establish a knowledge‐based approach for the optimization of CO2 selectivity. Regarding the inverse‐model catalysts, in situ X‐ray photoelectron spectroscopy (in situ XPS) studies on near‐surface intermetallic PdZn, PdGa, and PdIn phases (NSIP), as well as bulk Pd2Ga, under realistic MSR conditions were performed alongside catalytic testing. To highlight the importance of a specifically prepared bulk intermetallicoxide interface, unsupported bulk intermetallic compounds of PdxGay were chosen as additional MSR model compounds, which allowed us to clearly deduce, for example, the water‐activating role of the special Pd2Ga‐β‐Ga2O3 intermetallicoxide interaction. The inverse‐model studies were complemented by their related “real‐model” experiments. Structure–activity and structure–selectivity correlations were performed on epitaxially ordered PdZn, Pd5Ga2, PdIn, Pd3Sn2, and Pd2Ge nanoparticles that were embedded in thin crystalline films of their respective oxides. The reductively activated “thin‐film model catalysts” that were prepared by sequential Pd and oxide deposition onto NaCl(001) exhibited the required large bimetaloxide interface and the highly epitaxial ordering that was required for (HR)TEM studies and for identification of the structural and catalytic (bi)metalsupport interactions. To fully understand the bimetalsupport interactions in the supported systems, our studies were extended to the MeOH‐ and formaldehyde‐reforming properties of the clean supporting oxides. From a direct comparison of the “isolated” MSR performance of the purely bimetallic surfaces to that of the “isolated” oxide surfaces and of the “bimetaloxide contact” systems, a pronounced “bimetaloxide synergy” toward optimum CO2 activity/selectivity was most evident. Moreover, the system‐specific mechanisms that led to undesired CO formation and to spoiling of the CO2 selectivity could be extracted.


ACS Applied Materials & Interfaces | 2015

Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).

Amir Gharachorlou; Michael D. Detwiler; Xiang-Kui Gu; Lukas Mayr; Bernhard Klötzer; Jeffrey Greeley; R. Reifenberger; W. Nicholas Delgass; Fabio H. Ribeiro; Dmitry Zemlyanov

Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu1+ to metallic copper (Cu0) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al3+ in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al3+ (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al–O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3–4 Å/cycle for TMA+O2 ALD (O2 half-cycles at 623 K). No preferential growth of Al2O3 on the steps of Cu(111) was observed. According to STM, Al2O3 grows homogeneously on Cu(111) terraces.


Review of Scientific Instruments | 2013

An (ultra) high-vacuum compatible sputter source for oxide thin film growth

Lukas Mayr; Norbert Köpfle; Andrea Auer; Bernhard Klötzer; Simon Penner

A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important--yet hardly volatile--materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO2 and yttrium-stabilized ZrO2, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems.


Physical Chemistry Chemical Physics | 2016

Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: promotion of methane dry reforming

Lukas Mayr; Xuerong Shi; Norbert Köpfle; Cory Milligan; Dmitry Zemlyanov; Axel Knop-Gericke; Michael Hävecker; Bernhard Klötzer; Simon Penner

An inverse Pd-Zr model catalyst was prepared by chemical vapor deposition (CVD) using zirconium-t-butoxide (ZTB) as an organometallic precursor. Pd-Zr interaction was then investigated with focus on the correlation of reforming performance with the oxidation state of Zr. As test reactions, dry reforming of methane (DRM) and methanol steam reforming (MSR) were chosen. Depending on treatments, either ZrOxHy or ZrO2 overlayers or Zr as sub-nanometer clusters could be obtained. Following the adsorption of ZTB on Pd(111), a partially hydroxylated Zr4+-containing layer was formed, which can be reduced to metallic Zr by thermal annealing in ultrahigh vacuum, leading to redox-active Zr0 sub-nanometer clusters. Complementary density functional theoretical (DFT) calculations showed that a single layer of ZrO2 on Pd(111) can be more easily reduced toward the metallic state than a double- and triple layer. Also, the initial and resulting layer compositions greatly depend on gas environment. The lower the water background partial pressure, the faster and more complete the reduction of Zr4+ species to Zr0 on Pd takes place. Under methanol steam reforming conditions, water activation by hydroxylation of Zr occurs. In excess of methanol, strong coking is induced by the Pd/ZrOxHy interface. In contrast, dry reforming of methane is effectively promoted if these initially metallic Zr species are present in the pre-catalyst, leading to a Pd/ZrOxHy phase boundary by oxidative activation under reaction conditions. These reaction-induced active sites for DRM are stable with respect to carbon blocking or coking. In essence, Zr doping of Pd opens specific CO2 activation channels, which are absent on pure metallic Pd.


Chemcatchem | 2016

Boosting Hydrogen Production from Methanol and Water by in situ Activation of Bimetallic Cu−Zr Species

Lukas Mayr; Bernhard Klötzer; Daniela Schmidmair; Norbert Köpfle; Johannes Bernardi; Sabine Schwarz; Marc Armbrüster; Simon Penner

A bimetallic Cu/Cu51Zr14 precatalyst, activated in situ, for hydrogen generation from methanol and water provides very high CO2 selectivity (>99.9 %) and high H2 yields. Referenced to the geometric surface area of our model surface, higher activity of at least one order of magnitude was observed in comparison to supported Cu/ZrO2 and Cu/ZnO/ZrO2 catalysts. Evolution of structural activation monitored by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and electron microscopy indicates transformation of the bimetallic Cu/Cu51Zr14 precatalyst into an active, selective, and self‐stabilizing state with coexistence of dispersed Cu and partially hydroxylated tetragonal ZrO2. The outstanding performance is assigned to the presence of a high interface‐site concentration following in situ decomposition of the intermetallic compound. These active sites result from the cooperation of Cu, responsible for methanol activation, and tetragonal ZrO2, which activates the water by surface hydroxylation.


Journal of Physical Chemistry C | 2015

Near-Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Methane-Induced Carbon Deposition on Clean and Copper-Modified Polycrystalline Nickel Materials

Raffael Rameshan; Lukas Mayr; Bernhard Klötzer; Dominik Eder; Axel Knop-Gericke; Michael Hävecker; Raoul Blume; Robert Schlögl; Dmitry Zemlyanov; Simon Penner

In order to simulate solid-oxide fuel cell (SOFC)-related coking mechanisms of Ni, methane-induced surface carbide and carbon growth was studied under close-to-real conditions by synchrotron-based near-ambient-pressure (NAP) X-ray photoelectron spectroscopy (XPS) in the temperature region between 250 and 600 °C. Two complementary polycrystalline Ni samples were used, namely, Ni foam—serving as a model structure for bulk Ni in cermet materials such as Ni/YSZ—and Ni foil. The growth mechanism of graphene/graphite species was found to be closely related to that previously described for ethylene-induced graphene growth on Ni(111). After a sufficiently long “incubation” period of the Ni foam in methane at 0.2 mbar and temperatures around 400 °C, cooling down to ∼250 °C, and keeping the sample at this temperature for 50–60 min, initial formation of a near-surface carbide phase was observed, which exhibited the same spectroscopic fingerprint as the C2H4 induced Ni2C phase on Ni(111). Only in the presence of this carbidic species, subsequent graphene/graphite nucleation and growth was observed. Vice versa, the absence of this species excluded further graphene/graphite formation. At temperatures above 400 °C, decomposition/bulk dissolution of the graphene/graphite phase was observed on the rather “open” surface of the Ni foam. In contrast, Ni foil showed—under otherwise identical conditions—predominant formation of unreactive amorphous carbon, which can only be removed at ≥500 °C by oxidative clean-off. Moreover, the complete suppression of carbide and subsequent graphene/graphite formation by Cu-alloying of the Ni foam and by addition of water to the methane atmosphere was verified.


Polymers | 2017

Poly(piperazine-amide)/PES Composite Multi-Channel Capillary Membranes for Low-Pressure Nanofiltration

Jan Back; Martin Spruck; Marc Koch; Lukas Mayr; Simon Penner; Marco Rupprich

The mechanical stability of conventional single-channel capillary fibres can be improved in a multi-channel geometry, which has previously found application in ultrafiltration. In this work, multi-channel polyethersulfone (PES) capillary membranes comprising seven feed channels were successfully fabricated in an enhanced steam–dry–wet spinning process and coated on the inner surface with a thin polyamide (PA) layer via interfacial polymerization (IP). The coating procedure consisted of impregnating the support multi-channel capillary membranes (MCM) with an aqueous piperazine solution, flushing with nitrogen gas to remove excess droplets, and pumping an organic trimesoylchloride solution through the channels. Insights into the interfacial polymerization process were gained through the investigation of various parameters, including monomer ratio, contact time, and drying time. Membranes were characterised via scanning electron microscopy (SEM), atomic force microscopy (AFM), and filtration experiments. The optimisation of both the PES support membrane and IP process parameters allowed for the fabrication of composite MCM with an MgSO4 rejection of 91.4% and a solute flux of 68.8 L m−2 h−1 at an applied pressure of 3 bar. The fabricated composite MCM demonstrates that a favourable multi-channel arrangement can be upgraded with a PA layer for application in low-pressure nanofiltration.


Journal of Catalysis | 2012

In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

Christoph Rameshan; Werner Stadlmayr; Simon Penner; Harald Lorenz; Lukas Mayr; Michael Hävecker; Raoul Blume; Tulio C. R. Rocha; Detre Teschner; Axel Knop-Gericke; Robert Schlögl; Dmitry Zemlyanov; Norbert Memmel; Bernhard Klötzer


Journal of Catalysis | 2012

CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

Christoph Rameshan; Harald Lorenz; Lukas Mayr; Simon Penner; Dmitry Zemlyanov; Rosa Arrigo; Michael Haevecker; Raoul Blume; Axel Knop-Gericke; Robert Schlögl; Bernhard Klötzer

Collaboration


Dive into the Lukas Mayr's collaboration.

Top Co-Authors

Avatar

Simon Penner

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Rameshan

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Bernardi

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge