Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Neumann is active.

Publication


Featured researches published by Lukas Neumann.


computer vision and pattern recognition | 2012

Real-time scene text localization and recognition

Lukas Neumann

An end-to-end real-time scene text localization and recognition method is presented. The real-time performance is achieved by posing the character detection problem as an efficient sequential selection from the set of Extremal Regions (ERs). The ER detector is robust to blur, illumination, color and texture variation and handles low-contrast text. In the first classification stage, the probability of each ER being a character is estimated using novel features calculated with O(1) complexity per region tested. Only ERs with locally maximal probability are selected for the second stage, where the classification is improved using more computationally expensive features. A highly efficient exhaustive search with feedback loops is then applied to group ERs into words and to select the most probable character segmentation. Finally, text is recognized in an OCR stage trained using synthetic fonts. The method was evaluated on two public datasets. On the ICDAR 2011 dataset, the method achieves state-of-the-art text localization results amongst published methods and it is the first one to report results for end-to-end text recognition. On the more challenging Street View Text dataset, the method achieves state-of-the-art recall. The robustness of the proposed method against noise and low contrast of characters is demonstrated by “false positives” caused by detected watermark text in the dataset.


asian conference on computer vision | 2010

A method for text localization and recognition in real-world images

Lukas Neumann; Jiri Matas

A general method for text localization and recognition in real-world images is presented. The proposed method is novel, as it (i) departs from a strict feed-forward pipeline and replaces it by a hypothesesverification framework simultaneously processing multiple text line hypotheses, (ii) uses synthetic fonts to train the algorithm eliminating the need for time-consuming acquisition and labeling of real-world training data and (iii) exploits Maximally Stable Extremal Regions (MSERs) which provides robustness to geometric and illumination conditions. The performance of the method is evaluated on two standard datasets. On the Char74k dataset, a recognition rate of 72% is achieved, 18% higher than the state-of-the-art. The paper is first to report both text detection and recognition results on the standard and rather challenging ICDAR 2003 dataset. The text localization works for number of alphabets and the method is easily adapted to recognition of other scripts, e.g. cyrillics.


international conference on computer vision | 2013

Scene Text Localization and Recognition with Oriented Stroke Detection

Lukas Neumann; Jiri Matas

An unconstrained end-to-end text localization and recognition method is presented. The method introduces a novel approach for character detection and recognition which combines the advantages of sliding-window and connected component methods. Characters are detected and recognized as image regions which contain strokes of specific orientations in a specific relative position, where the strokes are efficiently detected by convolving the image gradient field with a set of oriented bar filters. Additionally, a novel character representation efficiently calculated from the values obtained in the stroke detection phase is introduced. The representation is robust to shift at the stroke level, which makes it less sensitive to intra-class variations and the noise induced by normalizing character size and positioning. The effectiveness of the representation is demonstrated by the results achieved in the classification of real-world characters using an euclidian nearest-neighbor classifier trained on synthetic data in a plain form. The method was evaluated on a standard dataset, where it achieves state-of-the-art results in both text localization and recognition.


international conference on document analysis and recognition | 2011

Text Localization in Real-World Images Using Efficiently Pruned Exhaustive Search

Lukas Neumann; Jiri Matas

An efficient method for text localization and recognition in real-world images is proposed. Thanks to effective pruning, it is able to exhaustively search the space of all character sequences in real time (200ms on a 640x480 image). The method exploits higher-order properties of text such as word text lines. We demonstrate that the grouping stage plays a key role in the text localization performance and that a robust and precise grouping stage is able to compensate errors of the character detector. The method includes a novel selector of Maximally Stable Extremal Regions (MSER) which exploits region topology. Experimental validation shows that 95.7% characters in the ICDAR dataset are detected using the novel selector of MSERs with a low sensitivity threshold. The proposed method was evaluated on the standard ICDAR 2003 dataset where it achieved state-of-the-art results in both text localization and recognition.


international conference on document analysis and recognition | 2015

ICDAR 2015 competition on Robust Reading

Dimosthenis Karatzas; Lluís Gómez-Bigordà; Anguelos Nicolaou; Suman K. Ghosh; Andrew D. Bagdanov; Masakazu Iwamura; Jiri Matas; Lukas Neumann; Vijay Ramaseshan Chandrasekhar; Shijian Lu; Faisal Shafait; Seiichi Uchida; Ernest Valveny

Results of the ICDAR 2015 Robust Reading Competition are presented. A new Challenge 4 on Incidental Scene Text has been added to the Challenges on Born-Digital Images, Focused Scene Images and Video Text. Challenge 4 is run on a newly acquired dataset of 1,670 images evaluating Text Localisation, Word Recognition and End-to-End pipelines. In addition, the dataset for Challenge 3 on Video Text has been substantially updated with more video sequences and more accurate ground truth data. Finally, tasks assessing End-to-End system performance have been introduced to all Challenges. The competition took place in the first quarter of 2015, and received a total of 44 submissions. Only the tasks newly introduced in 2015 are reported on. The datasets, the ground truth specification and the evaluation protocols are presented together with the results and a brief summary of the participating methods.


international conference on document analysis and recognition | 2013

On Combining Multiple Segmentations in Scene Text Recognition

Lukas Neumann; Jiri Matas

An end-to-end real-time scene text localization and recognition method is presented. The three main novel features are: (i) keeping multiple segmentations of each character until the very last stage of the processing when the context of each character in a text line is known, (ii) an efficient algorithm for selection of character segmentations minimizing a global criterion, and (iii) showing that, despite using theoretically scale-invariant methods, operating on a coarse Gaussian scale space pyramid yields improved results as many typographical artifacts are eliminated. The method runs in real time and achieves state-of-the-art text localization results on the ICDAR 2011 Robust Reading dataset. Results are also reported for end-to-end text recognition on the ICDAR 2011 dataset.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016

Real-Time Lexicon-Free Scene Text Localization and Recognition

Lukas Neumann; Jiri Matas

An end-to-end real-time text localization and recognition method is presented. Its real-time performance is achieved by posing the character detection and segmentation problem as an efficient sequential selection from the set of Extremal Regions. The ER detector is robust against blur, low contrast and illumination, color and texture variation. In the first stage, the probability of each ER being a character is estimated using features calculated by a novel algorithm in constant time and only ERs with locally maximal probability are selected for the second stage, where the classification accuracy is improved using computationally more expensive features. A highly efficient clustering algorithm then groups ERs into text lines and an OCR classifier trained on synthetic fonts is exploited to label character regions. The most probable character sequence is selected in the last stage when the context of each character is known. The method was evaluated on three public datasets. On the ICDAR 2013 dataset the method achieves state-of-the-art results in text localization; on the more challenging SVT dataset, the proposed method significantly outperforms the state-of-the-art methods and demonstrates that the proposed pipeline can incorporate additional prior knowledge about the detected text. The proposed method was exploited as the baseline in the ICDAR 2015 Robust Reading competition, where it compares favourably to the state-of-the art.


international conference on document analysis and recognition | 2015

Efficient Scene text localization and recognition with local character refinement

Lukas Neumann

An unconstrained end-to-end text localization and recognition method is presented. The method detects initial text hypothesis in a single pass by an efficient region-based method and subsequently refines the text hypothesis using a more robust local text model, which deviates from the common assumption of region-based methods that all characters are detected as connected components.


asian conference on computer vision | 2014

Efficient Character Skew Rectification in Scene Text Images

Michal Bušta; Tomáš Drtina; David Helekal; Lukas Neumann

We present an efficient method for character skew rectification in scene text images. The method is based on a novel skew estimators, which exploit intuitive glyph properties and which can be efficiently computed in a linear time. The estimators are evaluated on a synthetically generated data (including Latin, Cyrillic, Greek, Runic scripts) and real scene text images, where the skew rectification by the proposed method improves the accuracy of a state-of-the-art scene text recognition pipeline.


asian conference on computer vision | 2014

A Machine Learning Approach to Hypothesis Decoding in Scene Text Recognition

Jindřich Libovický; Lukas Neumann; Pavel Pecina

Scene Text Recognition (STR) is a task of localizing and transcribing textual information captured in real-word images. With its increasing accuracy, it becomes a new source of textual data for standard Natural Language Processing tasks and poses new problems because of the specific nature of Scene Text. In this paper, we learn a string hypotheses decoding procedure in an STR pipeline using structured prediction methods that proved to be useful in automatic Speech Recognition and Machine Translation. The model allow to employ a wide range of typographical and language features into the decoding process. The proposed method is evaluated on a standard dataset and improves both character and word recognition performance over the baseline.

Collaboration


Dive into the Lukas Neumann's collaboration.

Top Co-Authors

Avatar

Jiri Matas

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Michal Bušta

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

David Helekal

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jindřich Libovický

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Pavel Pecina

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Tomáš Drtina

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anguelos Nicolaou

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge