Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukas Vrba is active.

Publication


Featured researches published by Lukas Vrba.


PLOS ONE | 2010

Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells

Lukas Vrba; Taylor J. Jensen; James C. Garbe; Ronald L. Heimark; Anne E. Cress; Sally E. Dickinson; Martha R. Stampfer; Bernard W. Futscher

Background The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. Methodology/Principal Findings Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. Conclusions/Significance We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.


PLOS ONE | 2013

miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

Lukas Vrba; José L. Muñoz-Rodríguez; Martha R. Stampfer; Bernard W. Futscher

miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.


Genome Research | 2011

Epigenetic regulation of normal human mammary cell type–specific miRNAs

Lukas Vrba; James C. Garbe; Martha R. Stampfer; Bernard W. Futscher

Epigenetic mechanisms are important regulators of cell type-specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type-specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type-specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type-specific miRNA expression.


BMC Genomics | 2008

p53 induces distinct epigenetic states at its direct target promoters

Lukas Vrba; Damian J Junk; Petr Novak; Bernard W. Futscher

BackgroundThe tumor suppressor protein p53 is a transcription factor that is mutated in many cancers. Regulation of gene expression by binding of wild-type p53 to its target sites is accompanied by changes in epigenetic marks like histone acetylation. We studied DNA binding and epigenetic changes induced by wild-type and mutant p53 in non-malignant hTERT-immortalized human mammary epithelial cells overexpressing either wild-type p53 or one of four p53 mutants (R175H, R249S, R273H and R280K) on a wild-type p53 background.ResultsUsing chromatin immunoprecipitation coupled to a 13,000 human promoter microarray, we found that wild-type p53 bound 197 promoters on the microarray including known and novel p53 targets. Of these p53 targets only 20% showed a concomitant increase in histone acetylation, which was linked to increased gene expression, while 80% of targets showed no changes in histone acetylation. We did not observe any decreases in histone acetylation in genes directly bound by wild-type p53. DNA binding in samples expressing mutant p53 was reduced over 95% relative to wild-type p53 and very few changes in histone acetylation and no changes in DNA methylation were observed in mutant p53 expressing samples.ConclusionWe conclude that wild-type p53 induces transcription of target genes by binding to DNA and differential induction of histone acetylation at target promoters. Several new wild-type p53 target genes, including DGKZ, FBXO22 and GDF9, were found. DNA binding of wild-type p53 is highly compromised if mutant p53 is present due to interaction of both p53 forms resulting in no direct effect on epigenetic marks.


Cell Cycle | 2014

Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

James C. Garbe; Lukas Vrba; Klara Sputova; Laura Fuchs; Petr Novak; Arthur R. Brothman; Mark W. Jackson; Koei Chin; Mark A. LaBarge; George S. Watts; Bernard W. Futscher; Martha R. Stampfer

Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.


Epigenetics | 2013

Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation

Paul L. Severson; Erik J. Tokar; Lukas Vrba; Michael P. Waalkes; Bernard W. Futscher

Genome-wide disruption of the epigenetic code is a hallmark of malignancy that encompasses many distinct, highly interactive modifications. Delineating the aberrant epigenome produced during toxicant-mediated malignant transformation will help identify the underlying epigenetic drivers of environmental toxicant-induced carcinogenesis. Gene promoter DNA methylation and gene expression profiling of arsenite-transformed prostate epithelial cells showed a negative correlation between gene expression changes and DNA methylation changes; however, less than 10% of the genes with increased promoter methylation were downregulated. Studies described herein confirm that a majority of the DNA hypermethylation events occur at H3K27me3 marked genes that were already transcriptionally repressed. In contrast to aberrant DNA methylation targeting H3K27me3 pre-marked silent genes, we found that actively expressed C2H2 zinc finger genes (ZNFs) marked with H3K9me3 on their 3′ ends, were the favored targets of DNA methylation linked gene silencing. DNA methylation coupled, H3K9me3 mediated gene silencing of ZNF genes was widespread, occurring at individual ZNF genes on multiple chromosomes and across ZNF gene family clusters. At ZNF gene promoters, H3K9me3 and DNA hypermethylation replaced H3K4me3, resulting in a widespread downregulation of ZNF gene expression, which accounted for 8% of all the downregulated genes in the arsenical-transformed cells. In summary, these studies associate toxicant exposure with widespread silencing of ZNF genes by DNA hypermethylation-linked H3K9me3 spreading, further implicating epigenetic dysfunction as a driver of toxicant associated carcinogenesis.


Epigenetics | 2012

Agglomerates of aberrant DNA methylation are associated with toxicant-induced malignant transformation

Paul L. Severson; Erik J. Tokar; Lukas Vrba; Michael P. Waalkes; Bernard W. Futscher

Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2014

Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells.

Paul L. Severson; Lukas Vrba; Martha R. Stampfer; Bernard W. Futscher

Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.


Frontiers in Cell and Developmental Biology | 2015

Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells

Jonathan K. Lee; James C. Garbe; Lukas Vrba; Masaru Miyano; Bernard W. Futscher; Martha R. Stampfer; Mark A. LaBarge

Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16INK4A, or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells.


PLOS ONE | 2015

Differentially expressed microRNAs in postpartum breast cancer in Hispanic women.

José L. Muñoz-Rodríguez; Lukas Vrba; Bernard W. Futscher; Chengcheng Hu; Ian K. Komenaka; Maria Mercedes Meza-Montenegro; Luis Enrique Gutierrez-Millan; Adrian Daneri-Navarro; Patricia A. Thompson; Maria Elena Martinez

The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers.

Collaboration


Dive into the Lukas Vrba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha R. Stampfer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Matoušek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

James C. Garbe

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. LaBarge

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge