Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James C. Garbe is active.

Publication


Featured researches published by James C. Garbe.


Nature Genetics | 2004

In situ analyses of genome instability in breast cancer

Koei Chin; Carlos Ortiz de Solorzano; David W. Knowles; Arthur Jones; William S. Chou; Enrique Garcia Rodriguez; Wen-Lin Kuo; Britt-Marie Ljung; Karen Chew; Kenneth Myambo; Monica Miranda; Sheryl R. Krig; James C. Garbe; Martha R. Stampfer; Paul Yaswen; Joe W. Gray; Stephen J. Lockett

Transition through telomere crisis is thought to be a crucial event in the development of most breast carcinomas. Our goal in this study was to determine where this occurs in the context of histologically defined breast cancer progression. To this end, we assessed genome instability (using fluorescence in situ hybridization) and other features associated with telomere crisis in normal ductal epithelium, usual ductal hyperplasia, ductal carcinoma in situ and invasive cancer. We modeled this process in vitro by measuring these same features in human mammary epithelial cell cultures during ZNF217-mediated transition through telomere crisis and immortalization. Taken together, the data suggest that transition through telomere crisis and immortalization in breast cancer occurs during progression from usual ductal hyperplasia to ductal carcinoma in situ.


PLOS ONE | 2010

Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells

Lukas Vrba; Taylor J. Jensen; James C. Garbe; Ronald L. Heimark; Anne E. Cress; Sally E. Dickinson; Martha R. Stampfer; Bernard W. Futscher

Background The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. Methodology/Principal Findings Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2′-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. Conclusions/Significance We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(-) human mammary epithelial cells.

Martha R. Stampfer; James C. Garbe; Gerri Levine; Serge Lichtsteiner; Alain P. Vasserot; Paul Yaswen

Failures to arrest growth in response to senescence or transforming growth factor β (TGF-β) are key derangements associated with carcinoma progression. We report that activation of telomerase activity may overcome both inhibitory pathways. Ectopic expression of the human telomerase catalytic subunit, hTERT, in cultured human mammary epithelial cells (HMEC) lacking both telomerase activity and p16INK4A resulted in gaining the ability to maintain indefinite growth in the absence and presence of TGF-β. The ability to maintain growth in TGF-β was independent of telomere length and required catalytically active telomerase capable of telomere maintenance in vivo. The capacity of ectopic hTERT to induce TGF-β resistance may explain our previously described gain of TGF-β resistance after reactivation of endogenous telomerase activity in rare carcinogen-treated HMEC. In those HMEC that overcame senescence, both telomerase activity and TGF-β resistance were acquired gradually during a process we have termed conversion. This effect of hTERT may model a key change occurring during in vivo human breast carcinogenesis.


Molecular and Cellular Biology | 2005

Chromatin Inactivation Precedes De Novo DNA Methylation during the Progressive Epigenetic Silencing of the RASSF1A Promoter

Maria Strunnikova; Undraga Schagdarsurengin; Astrid Kehlen; James C. Garbe; Martha R. Stampfer; Reinhard Dammann

ABSTRACT Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.


Cancer Research | 2009

Molecular Distinctions between Stasis and Telomere Attrition Senescence Barriers Shown by Long-term Culture of Normal Human Mammary Epithelial Cells

James C. Garbe; Sanchita Bhattacharya; Batul Merchant; Ekaterina Bassett; Karen Swisshelm; Heidi S. Feiler; Andrew J. Wyrobek; Martha R. Stampfer

Normal human epithelial cells in culture have generally shown a limited proliferative potential of approximately 10 to 40 population doublings before encountering a stress-associated senescence barrier (stasis) associated with elevated levels of cyclin-dependent kinase inhibitors p16 and/or p21. We now show that simple changes in medium composition can expand the proliferative potential of human mammary epithelial cells (HMEC) initiated as primary cultures to 50 to 60 population doublings followed by p16-positive, senescence-associated beta-galactosidase-positive stasis. We compared the properties of growing and senescent pre-stasis HMEC with growing and senescent post-selection HMEC, that is, cells grown in a serum-free medium that overcame stasis via silencing of p16 expression and that display senescence associated with telomere dysfunction. Cultured pre-stasis populations contained cells expressing markers associated with luminal and myoepithelial HMEC lineages in vivo in contrast to the basal-like phenotype of the post-selection HMEC. Gene transcript and protein expression, DNA damage-associated markers, mean telomere restriction fragment length, and genomic stability differed significantly between HMEC populations at the stasis versus telomere dysfunction senescence barriers. Senescent isogenic fibroblasts showed greater similarity to HMEC at stasis than at telomere dysfunction, although their gene transcript profile was distinct from HMEC at both senescence barriers. These studies support our model of the senescence barriers encountered by cultured HMEC in which the first barrier, stasis, is retinoblastoma-mediated and independent of telomere length, whereas a second barrier (agonescence or crisis) results from telomere attrition leading to telomere dysfunction. Additionally, the ability to maintain long-term growth of genomically stable multilineage pre-stasis HMEC populations can greatly enhance experimentation with normal HMEC.


Cancer Research | 2009

Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

Petr Novak; Taylor J. Jensen; James C. Garbe; Martha R. Stampfer; Bernard W. Futscher

The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that may prove useful in breast cancer risk assessment.


Molecular Cancer Research | 2010

Exon-Level Microarray Analyses Identify Alternative Splicing Programs in Breast Cancer

Anna Lapuk; Henry Marr; Lakshmi Jakkula; Helder Pedro; Sanchita Bhattacharya; Elizabeth Purdom; Zhi Hu; Ken M. Simpson; Lior Pachter; Steffen Durinck; Nicholas Wang; Bahram Parvin; Gerald Fontenay; Terence P. Speed; James C. Garbe; Martha R. Stampfer; Hovig Bayandorian; Shannon Dorton; Tyson A. Clark; Anthony C. Schweitzer; Andrew J. Wyrobek; Heidi S. Feiler; Paul T. Spellman; John G. Conboy; Joe W. Gray

Protein isoforms produced by alternative splicing (AS) of many genes have been implicated in several aspects of cancer genesis and progression. These observations motivated a genome-wide assessment of AS in breast cancer. We accomplished this by measuring exon level expression in 31 breast cancer and nonmalignant immortalized cell lines representing luminal, basal, and claudin-low breast cancer subtypes using Affymetrix Human Junction Arrays. We analyzed these data using a computational pipeline specifically designed to detect AS with a low false-positive rate. This identified 181 splice events representing 156 genes as candidates for AS. Reverse transcription-PCR validation of a subset of predicted AS events confirmed 90%. Approximately half of the AS events were associated with basal, luminal, or claudin-low breast cancer subtypes. Exons involved in claudin-low subtype–specific AS were significantly associated with the presence of evolutionarily conserved binding motifs for the tissue-specific Fox2 splicing factor. Small interfering RNA knockdown of Fox2 confirmed the involvement of this splicing factor in subtype-specific AS. The subtype-specific AS detected in this study likely reflects the splicing pattern in the breast cancer progenitor cells in which the tumor arose and suggests the utility of assays for Fox-mediated AS in cancer subtype definition and early detection. These data also suggest the possibility of reducing the toxicity of protein-targeted breast cancer treatments by targeting protein isoforms that are not present in limiting normal tissues. Mol Cancer Res; 8(7); 961–74. ©2010 AACR.


Genome Research | 2011

Epigenetic regulation of normal human mammary cell type–specific miRNAs

Lukas Vrba; James C. Garbe; Martha R. Stampfer; Bernard W. Futscher

Epigenetic mechanisms are important regulators of cell type-specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type-specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type-specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type-specific miRNA expression.


Nature Methods | 2015

Programmed synthesis of three-dimensional tissues

Michael E. Todhunter; Noel Y. Jee; Alex J. Hughes; Maxwell C. Coyle; Alec E. Cerchiari; Justin Farlow; James C. Garbe; Mark A. LaBarge; Tejal A. Desai; Zev J. Gartner

Reconstituting tissues from their cellular building blocks facilitates the modeling of morphogenesis, homeostasis, and disease in vitro. Here, we describe DNA Programmed Assembly of Cells (DPAC) to reconstitute the multicellular organization of tissues having programmed size, shape, composition, and spatial heterogeneity. DPAC uses dissociated cells that are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to other surfaces coated with complementary DNA sequences. DNA-patterned substrates function as removable and adhesive templates, and layer-by-layer DNA-programmed assembly builds arrays of tissues into the third dimension above the template. DNase releases completed arrays of microtissues from the template concomitant with full embedding in a variety of extracellular matrix (ECM) gels. DPAC positions subpopulations of cells with single-cell spatial resolution and generates cultures several centimeters long. We used DPAC to explore the impact of ECM composition, heterotypic cell-cell interactions, and patterns of signaling heterogeneity on collective cell behaviors.


Oncogene | 2003

Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines

Martha R. Stampfer; James C. Garbe; Tarlochan Nijjar; Don Wigington; Karen Swisshelm; Paul Yaswen

We describe novel effects of p53 loss on immortal transformation, based upon comparison of immortally transformed human mammary epithelial cell (HMEC) lines lacking functional p53 with closely related p53(+) lines. Our previous studies of p53(+) immortal HMEC lines indicated that overcoming the stringent replicative senescence step associated with critically short telomeres (agonescence), produced indefinite lifespan lines that maintained growth without immediately expressing telomerase activity. These telomerase(−) ‘conditionally immortal’ HMEC underwent an additional step, termed conversion, to become fully immortal telomerase(+) lines with uniform good growth. The very gradual conversion process was associated with slow heterogeneous growth and high expression of the cyclin-dependent kinase inhibitor p57Kip2. We now show that p53 suppresses telomerase activity and is necessary for the p57 expression in early passage p53(+) conditionally immortal HMEC lines, and that p53(−/−) lines exhibit telomerase reactivation and attain full immortality much more rapidly. A p53-inhibiting genetic suppressor element introduced into early passages of a conditionally immortal telomerase(−) p53(+) HMEC line led to rapid induction of hTERT mRNA, expression of telomerase activity, loss of p57 expression, and quick attainment of uniform good growth. These studies indicate that derangements in p53 function may impact malignant progression through direct effects on the conversion process, a potentially rate-limiting step in HMEC acquisition of uniform unlimited growth potential. These studies also provide evidence that the function of p53 in suppression of telomerase activity is separable from its cell cycle checkpoint function.

Collaboration


Dive into the James C. Garbe's collaboration.

Top Co-Authors

Avatar

Martha R. Stampfer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark A. LaBarge

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaru Miyano

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ekaterina Bassett

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fanny A. Pelissier

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tarlochan Nijjar

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge