Lukasz Dziewit
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lukasz Dziewit.
Journal of Bacteriology | 2007
Lukasz Dziewit; Magdalena Jazurek; Lukasz Drewniak; Jadwiga Baj; Dariusz Bartosik
A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from plasmid pAMI2 of Paracoccus aminophilus (the prototype of this group), (ii) gp49-gp48 from the linear bacteriophage N15 of Escherichia coli, (iii) s045-s044 from SXT, and (iv) Z3230-Z3231 from the genomic island of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Functional analysis revealed that all but one of these loci (Z3230-Z3231) are able to stabilize heterologous replicons, although the host ranges varied. The TA cassettes analyzed have the following common features: (i) the toxins are encoded by the first gene of each operon; (ii) the antitoxins contain a predicted helix-turn-helix motif of the XRE family; and (iii) the cassettes have two promoters that are different strengths, one which is located upstream of the toxin gene and one which is located upstream of the antitoxin gene. All four toxins tested are functional in E. coli; overexpression of the toxins (in the absence of antitoxin) results in a bacteriostatic effect manifested by elongation of bacterial cells and growth arrest. The toxins have various effects on cell viability, which suggests that they may recognize different intracellular targets. Preliminary data suggest that different cellular proteases are involved in degradation of antitoxins encoded by the loci analyzed.
Nature Communications | 2016
George C. diCenzo; Alice Checcucci; Marco Bazzicalupo; Alessio Mengoni; Carlo Viti; Lukasz Dziewit; Turlough M. Finan; Marco Galardini; Marco Fondi
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes.
Frontiers in Microbiology | 2014
Lukasz Dziewit; Dariusz Bartosik
Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.
Journal of Microbiological Methods | 2011
Lukasz Dziewit; Marcin Adamczuk; Magdalena Szuplewska; Dariusz Bartosik
We have developed a DIY (Do It Yourself) series of genetic cassettes, which facilitate construction of novel versatile vectors for Alphaproteobacteria. All the cassettes are based on defined genetic modules derived from three natural plasmids of Paracoccus aminophilus JCM 7686. We have constructed over 50 DIY cassettes, which differ in structure and specific features. All of them are functional in eight strains representing three orders of Alphaproteobacteria: Rhodobacterales, Rhizobiales and Caulobacterales. Besides various replication and stabilization systems, many of the cassettes also contain selective markers appropriate for Alphaproteobacteria (40 cassettes) and genetic modules responsible for mobilization for conjugal transfer (24 cassettes). All the DIY cassettes are bordered by different types of polylinkers, which facilitate vector construction. Using these DIY cassettes, we have created a set of compatible Escherichia coli-Alphaproteobacteria mobilizable shuttle vectors (high or low copy number in E. coli), which will greatly assist the genetic manipulation of Alphaproteobacteria.
Applied and Environmental Microbiology | 2010
Lukasz Dziewit; Michal Dmowski; Jadwiga Baj; Dariusz Bartosik
ABSTRACT N,N-Dimethylformamide (DMF), a toxic solvent used in the chemical industry, is frequently present in industrial wastes. Plasmid pAMI2 (18.6 kb) of Paracoccus aminophilus JCM 7686 carries genetic information which is crucial for methylotrophic growth of this bacterium, using DMF as the sole source of carbon and energy. Besides a conserved backbone related to pAgK84 of Agrobacterium radiobacter K84, pAMI2 carries a three-gene cluster coding for the protein DmfR, which has sequence similarities to members of the LuxR family of transcription regulators, and two subunits (DmfA1 and DmfA2) of N,N-dimethylformamidase, an enzyme of high substrate specificity that catalyzes the first step in the degradation of DMF. Genetic analysis revealed that these genes, which are all placed in the same orientation, constitute an inducible operon whose expression is activated in the presence of DMF by the positive transcription regulator DmfR. This operon was used to construct a strain able to degrade DMF at high concentrations that might be used in the biotreatment of DMF-containing industrial wastewaters. To our knowledge, this is the first study to provide insights into the genetic organization and regulation as well as the dissemination in bacteria of genes involved in the enzymatic breakdown of DMF.
Journal of Virology | 2014
Lukasz Dziewit; Karolina Oscik; Dariusz Bartosik; Monika Radlinska
ABSTRACT ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of mimicking the host regulatory mechanisms by viruses is quite common in bacteriophages.
BMC Microbiology | 2013
Lukasz Dziewit; Adam Pyzik; Renata Matlakowska; Jadwiga Baj; Magdalena Szuplewska; Dariusz Bartosik
BackgroundHalomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental conditions.ResultsThe analysis revealed that ZM3 carries plasmid pZM3H1 (31,370 bp), whose replication system may be considered as an archetype of a novel subgroup of IncU-like replicons. pZM3H1 is a narrow host range, mobilizable plasmid (encodes a relaxase of the MOBV family) containing mercury resistance operon (mer) and czcD genes (mediate resistance to zinc and cobalt), which are part of a large truncated Tn3 family transposon. Further analysis demonstrated that the phenotypes determined by the pZM3H1 resistance cassette are highly dependent on the host strain. In another strand of the study, the trap plasmid pMAT1 was employed to identify functional transposable elements of Halomonas sp. ZM3. Using the sacB positive selection strategy two insertion sequences were identified: ISHsp1 - representing IS5 group of IS5 family and ISHsp2 - a distinct member of the IS630 family.ConclusionsThis study provides the first detailed description of mobile DNA in a member of the family Halomonadaceae. The identified IncU plasmid pZM3H1 confers resistance phenotypes enabling adaptation of the host strain to the Zelazny Most environment. The extended comparative analysis has shed light on the distribution of related IncU plasmids among bacteria, which, in many cases, reflects the frequency and direction of horizontal gene transfer events. Our results also identify plasmid-encoded modules, which may form the basis of novel shuttle vectors, specific for this group of halophilic bacteria.
PLOS ONE | 2012
Lukasz Dziewit; Jadwiga Baj; Magdalena Szuplewska; Anna Maj; Mateusz Tabin; Anna Czyzkowska; Grazyna Skrzypczyk; Marcin Adamczuk; Tomasz Sitarek; Piotr Stawiński; Agnieszka Tudek; Katarzyna Wanasz; Ewa Wardal; Ewa Piechucka; Dariusz Bartosik
Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution.
Frontiers in Microbiology | 2015
Lukasz Dziewit; Jakub Czarnecki; Emilia Prochwicz; Daniel Wibberg; Andreas Schlüter; Alfred Pühler; Dariusz Bartosik
Paracoccus aminophilus JCM 7686 (Alphaproteobacteria) is a facultative, heterotrophic methylotroph capable of utilizing a wide range of C1 compounds as sole carbon and energy sources. Analysis of the JCM 7686 genome revealed the presence of genes involved in the oxidation of methanol, methylamine, dimethylamine, trimethylamine, N,N-dimethylformamide, and formamide, as well as the serine cycle, which appears to be the only C1 assimilatory pathway in this strain. Many of these genes are located in different extrachromosomal replicons and are not present in the genomes of most members of the genus Paracoccus, which strongly suggests that they have been horizontally acquired. When compared with Paracoccus denitrificans Pd1222 (type strain of the genus Paracoccus), P. aminophilus JCM 7686 has many additional methylotrophic capabilities (oxidation of dimethylamine, trimethylamine, N,N-dimethylformamide, the serine cycle), which are determined by the presence of three separate gene clusters. Interestingly, related clusters form compact methylotrophy islands within the genomes of Paracoccus sp. N5 and many marine bacteria of the Roseobacter clade.
BioMed Research International | 2015
Marcin Adamczuk; Piotr Zaleski; Lukasz Dziewit; Renata Wolinowska; Marta Nieckarz; Paweł Wawrzyniak; Piotr Kierył; Andrzej Plucienniczak; Dariusz Bartosik
Antibiotic resistance determinants are frequently associated with plasmids and other mobile genetic elements, which simplifies their horizontal transmission. Several groups of plasmids (including replicons of the IncL/M incompatibility group) were found to play an important role in the dissemination of resistance genes encoding β-lactamases. The IncL/M plasmids are large, broad host range, and self-transmissible replicons. We have identified and characterized two novel members of this group: pARM26 (isolated from bacteria inhabiting activated sludge from a wastewater treatment plant) and pIGT15 (originating from a clinical strain of Escherichia coli). This instigated a detailed comparative analysis of all available sequences of IncL/M plasmids encoding β-lactamases. The core genome of these plasmids is comprised of 20 genes with conserved synteny. Phylogenetic analyses of these core genes allowed clustering of the plasmids into four separate groups, which reflect their antibiotic resistance profiles. Examination of the biogeography of the IncL/M plasmids revealed that they are most frequently found in bacteria of the family Enterobacteriaceae originating from the Mediterranean region and Western Europe and that they are able to persist in various ecological niches even in the absence of direct antibiotic selection pressure.