Dariusz Bartosik
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dariusz Bartosik.
Journal of Bacteriology | 2007
Lukasz Dziewit; Magdalena Jazurek; Lukasz Drewniak; Jadwiga Baj; Dariusz Bartosik
A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from plasmid pAMI2 of Paracoccus aminophilus (the prototype of this group), (ii) gp49-gp48 from the linear bacteriophage N15 of Escherichia coli, (iii) s045-s044 from SXT, and (iv) Z3230-Z3231 from the genomic island of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Functional analysis revealed that all but one of these loci (Z3230-Z3231) are able to stabilize heterologous replicons, although the host ranges varied. The TA cassettes analyzed have the following common features: (i) the toxins are encoded by the first gene of each operon; (ii) the antitoxins contain a predicted helix-turn-helix motif of the XRE family; and (iii) the cassettes have two promoters that are different strengths, one which is located upstream of the toxin gene and one which is located upstream of the antitoxin gene. All four toxins tested are functional in E. coli; overexpression of the toxins (in the absence of antitoxin) results in a bacteriostatic effect manifested by elongation of bacterial cells and growth arrest. The toxins have various effects on cell viability, which suggests that they may recognize different intracellular targets. Preliminary data suggest that different cellular proteases are involved in degradation of antitoxins encoded by the loci analyzed.
Journal of Bacteriology | 2001
Dariusz Bartosik; Michal Szymanik; Edyta Wysocka
The replicator region of composite plasmid pTAV1 of Paracoccus versutus (included in mini-replicon pTAV320) belongs to the family of repABC replicons commonly found in plasmids harbored by Agrobacterium and Rhizobium spp. The repABC replicons encode three genes clustered in an operon, which are involved in partitioning (repA and repB) and replication (repC). In order to localize the partitioning site of pTAV320, the two identified incompatibility determinants of this mini-replicon (inc1, located in the intergenic sequence between repB and repC; and inc2, situated downstream of the repC gene) were PCR amplified and used together with purified RepB fusion protein (homologous to the type B partitioning proteins binding to the partitioning sites) in an electrophoretic mobility shift assay. The protein bound only inc2, forming two complexes in a protein concentration-dependent manner. The inc2 region contains two long (14-bp) repeated sequences (R1 and R2). Disruption of these sequences completely eliminates RepB binding ability. R1 and R2 have sequence similarities with analogous repeats of another repABC replicon of plasmid pPAN1 of Paracoccus pantotrophus DSM 82.5 and with centromeric sequences of the Bacillus subtilis chromosome. Excess RepB protein resulted in destabilization of the inc2-containing plasmid in Escherichia coli. On the other hand, the inc2 region could stabilize another unstable replicon in P. versutus when RepA and RepB were delivered in trans, proving that this region has centromere-like activity. Thus, it was demonstrated that repA, repB, and inc2 constitute a functional system for active partitioning of pTAV320.
Fems Microbiology Letters | 2012
Maria Smorawinska; Magdalena Szuplewska; Piotr Zaleski; Paweł Wawrzyniak; Anna Maj; Andrzej Plucienniczak; Dariusz Bartosik
Klebsiella pneumoniae 287-w carries three small narrow host range (NHR) plasmids (pIGMS31, pIGMS32, and pIGRK), which could be maintained in several closely related species of Gammaproteobacteria, but not in Alphaproteobacteria. The plasmids contain different mobilization systems (MOB), whose activity in Escherichia coli was demonstrated in the presence of the helper transfer system originating from plasmid RK2. The MOBs of pIGMS31 and pIGMS32 are highly conserved in many bacterial plasmids (members of the MOB family), while the predicted MOB of pIGRK has a unique structure, encoding a protein similar to phage-related integrases. The MOBs of pIGMS31 and pIGMS32 enabled the transfer of heterologous replicons from E. coli into both gammaproteobacterial and alphaproteobacterial hosts, which suggests that these NHR plasmids contain broad host range MOB systems. Such plasmids therefore represent efficient carrier molecules, which may act as natural suicide vectors promoting the spread of diverse genetic information (including other types of mobile elements, e.g. resistance transposons) among evolutionarily distinct bacterial species. Thus, mobilizable NHR plasmids may play a much more important role in horizontal gene transfer than previously thought.
Microbiology | 2002
Dariusz Bartosik; Jadwiga Baj; Marta Sochacka; Ewa Piechucka; Miroslawa Wlodarczyk
The complete nucleotide sequence of the small, cryptic plasmid pWKS1 (2697 bp) of Paracoccus pantotrophus DSM 11072 was determined. The G+C content of the sequence of this plasmid was 62 mol%. Analysis revealed that over 80% of the plasmid genome was covered by two ORFs, ORF1 and ORF2, which were capable of encoding putative peptides of 44.1 and 37.8 kDa, respectively. Mutational analysis showed that ORF2 was crucial for plasmid replication. The translational product of ORF2 shared local homologies with replication proteins of several theta-replicating lactococcal plasmids, as well as with the Rep proteins of plasmids residing in Gram-negative hosts. An A+T-rich region, located upstream of the rep gene and containing three tandemly repeated 21 bp long iteron-like sequences, served as the origin of replication (oriV). ORF1 encoded a putative mobilization protein with similarities to mobilization proteins (Mob) from the broad-host-range plasmid pBBR1 and plasmids of Gram-positive bacteria. A plasmid bearing the MOB module of pWKS1 (the mob gene and the oriT sequence) could be mobilized for transfer (by IncP RP4 transfer apparatus) at low frequency between different strains of Escherichia coli. MOB modules of pWKS1 and pBBR1 were functionally complementary to each other. Hybridization analysis revealed that only plasmid pSOV1 (6.5 kb), among all of the paracoccal plasmids identified so far, carries sequences related to pWKS1. Plasmid pWKS1 could replicate in 10 species of Paracoccus and in Agrobacterium tumefaciens, Rhizobium leguminosarum and Rhodobacter sphaeroides, but it could not replicate in E. coli.
Frontiers in Microbiology | 2014
Lukasz Dziewit; Dariusz Bartosik
Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.
Microbiology | 2002
Dariusz Bartosik; Jadwiga Baj; Aneta A Bartosik; Miroslawa Wlodarczyk
The replicon of the pTAV3 megaplasmid (approx. 400 kb) of Paracoccus versutus has been localized to a 4center dot3 kb EcoRI restriction fragment and its entire nucleotide sequence determined. The G+C content of the entire sequence is 66 mol%, which is within the range (62-66 mol%) previously determined for P. versutus total DNA. ORF1 encodes a replication initiation protein Rep (47.2 kDa), which shares substantial similarity with putative proteins of the Coxiella burnetii plasmids QpH1 and QpDV, and the replication protein of Pseudomonas syringae plasmid pPS10. ORF2, located in the opposite transcriptional orientation to ORF1, encodes a putative protein that shares similarity to a subfamily of ATPases involved in plasmid partitioning. The highest similarity was observed with homologous proteins (RepA) encoded by the repABC family of replicons found in several plasmids of Agrobacterium, Rhizobium and Paracoccus spp. The predicted product of ORF3 was similar to AcoR, Nif and NtrC transcriptional activators. A strong incompatibility determinant (inc) was localized between ORF1 (rep) and ORF2 (parA). The origin of replication of pTAV400 contains a short A+T-rich region and several imperfect palindromic sequences. Curing experiments demonstrated that the megaplasmid bears genes required for growth in minimal media and can therefore be referred to as a mini-chromosome. Megaplasmids pTAV3 of P. versutus UW1 and pKLW2 of Paracoccus pantotrophus DSM 11073 were found to carry closely related, incompatible replicons. It has been shown that plasmid pORI6 (containing oriV of pTAV3 cloned into plasmid pABW1, which does not replicate in Paracoccus spp.) can be trans activated not only by pTAV3, but also by pKLW2. Using pORI6, it was demonstrated that replication systems related to pTAV3 are also present in the replicons of Paracoccus alcaliphilus JCM 7364, Paracoccus thiocyanatus IAM 12816 and Paracoccus methylutens DM 12.
Journal of Microbiological Methods | 2011
Lukasz Dziewit; Marcin Adamczuk; Magdalena Szuplewska; Dariusz Bartosik
We have developed a DIY (Do It Yourself) series of genetic cassettes, which facilitate construction of novel versatile vectors for Alphaproteobacteria. All the cassettes are based on defined genetic modules derived from three natural plasmids of Paracoccus aminophilus JCM 7686. We have constructed over 50 DIY cassettes, which differ in structure and specific features. All of them are functional in eight strains representing three orders of Alphaproteobacteria: Rhodobacterales, Rhizobiales and Caulobacterales. Besides various replication and stabilization systems, many of the cassettes also contain selective markers appropriate for Alphaproteobacteria (40 cassettes) and genetic modules responsible for mobilization for conjugal transfer (24 cassettes). All the DIY cassettes are bordered by different types of polylinkers, which facilitate vector construction. Using these DIY cassettes, we have created a set of compatible Escherichia coli-Alphaproteobacteria mobilizable shuttle vectors (high or low copy number in E. coli), which will greatly assist the genetic manipulation of Alphaproteobacteria.
Applied and Environmental Microbiology | 2010
Lukasz Dziewit; Michal Dmowski; Jadwiga Baj; Dariusz Bartosik
ABSTRACT N,N-Dimethylformamide (DMF), a toxic solvent used in the chemical industry, is frequently present in industrial wastes. Plasmid pAMI2 (18.6 kb) of Paracoccus aminophilus JCM 7686 carries genetic information which is crucial for methylotrophic growth of this bacterium, using DMF as the sole source of carbon and energy. Besides a conserved backbone related to pAgK84 of Agrobacterium radiobacter K84, pAMI2 carries a three-gene cluster coding for the protein DmfR, which has sequence similarities to members of the LuxR family of transcription regulators, and two subunits (DmfA1 and DmfA2) of N,N-dimethylformamidase, an enzyme of high substrate specificity that catalyzes the first step in the degradation of DMF. Genetic analysis revealed that these genes, which are all placed in the same orientation, constitute an inducible operon whose expression is activated in the presence of DMF by the positive transcription regulator DmfR. This operon was used to construct a strain able to degrade DMF at high concentrations that might be used in the biotreatment of DMF-containing industrial wastewaters. To our knowledge, this is the first study to provide insights into the genetic organization and regulation as well as the dissemination in bacteria of genes involved in the enzymatic breakdown of DMF.
Journal of Bacteriology | 2003
Dariusz Bartosik; Marta Sochacka; Jadwiga Baj
We studied diversity and distribution of transposable elements residing in different strains (DSM 11072, DSM 11073, DSM 65, and LMD 82.5) of a soil bacterium Paracoccus pantotrophus (alpha-Proteobacteria). With application of a shuttle entrapment vector pMEC1, several novel insertion sequences (ISs) and transposons (Tns) have been identified. They were sequenced and subjected to detailed comparative analysis, which allowed their characterization (i.e., identification of transposase genes, terminal inverted repeats, as well as target sequences) and classification into the appropriate IS or Tn families. The frequency of transposition of these elements varied and ranged from 10(-6) to 10(-3) depending on the strain. The copy number, localization (plasmid or chromosome), and distribution of these elements in the Paracoccus species P. pantotrophus, P. denitrificans, P. methylutens, P. solventivorans, and P. versutus were analyzed. This allowed us to distinguish elements that are common in paracocci (ISPpa2, ISPpa3--both of the IS5 family--and ISPpa5 of IS66 family) as well as strain-specific ones (ISPpa1 of the IS256 family, ISPpa4 of the IS5 family, and Tn3434 and Tn5393 of the Tn3 family), acquired by lateral transfer events. These elements will be of a great value in the design of new genetic tools for paracocci, since only one element (IS1248 of P. denitrificans) has been described so far in this genus.
Plasmid | 2002
Dariusz Bartosik; Jadwiga Baj; Ewa Piechucka; Edyta Waker; Miroslawa Wlodarczyk
The repABC replicons have an unusual structure, since they carry genes coding for partitioning (repA, repB) and replication (repC) proteins, which are organized in an operon. So far, the presence of these compact bi-functional modules has been reported only in the megaplasmids of the Rhizobiaceae and within the plasmid pTAV1 (107kb) of Paracoccus versutus. We studied the distribution of repABC-type replicons within bacteria belonging to the genus Paracoccus. We found that repABC replicons occur only in the group of pTAV1-like plasmids: pKLW1, pHG16-a, pWKS2, and pPAN1, harbored by different strains of Paracoccus pantotrophus. A partial sequencing approach followed by phylogenetic analysis revealed that these replicons constitute a distinct evolutionary branch of repABC replicons. Incompatibility studies showed that they represent two incompatibility groups designated IncABC1 (pTAV1, pKLW1, and pHG16-a) and IncABC2 (pPAN1). Sequence comparison using available databases allowed the identification, within plasmid pRS241d of Rhodobacter sphaeroides 2.4.1, of an additional sequence highly homologous to the paracoccal repABC replicons, which has been included in comparative analyses.