Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lukasz Witek is active.

Publication


Featured researches published by Lukasz Witek.


Journal of Oral and Maxillofacial Surgery | 2012

Effect of Drilling Dimension on Implant Placement Torque and Early Osseointegration Stages: An Experimental Study in Dogs

Felipe Eduardo Baires Campos; Julio B. Gomes; Charles Marin; Hellen S. Teixeira; Marcelo Suzuki; Lukasz Witek; Darceny Zanetta-Barbosa; Paulo G. Coelho

PURPOSE Primary stability has been regarded as a key factor to ensure uneventful osseointegration of dental implants. Such stability is often achieved by placing implants in undersized drilled bone. The present study evaluated the effect of drilling dimensions in insertion torque and early implant osseointegration stages in a beagle dog model. MATERIALS AND METHODS Six beagle dogs were acquired and subjected to bilateral surgeries in the radii 1 and 3 weeks before death. During surgery, 3 implants, 4 mm in diameter by 10 mm in length, were placed in bone sites drilled to 3.2 mm, 3.5 mm, and 3.8 mm in diameter. The insertion torque was recorded for all samples. After death, the implants in bone were nondecalcified processed and morphologically and morphometrically (bone-to-implant contact and bone area fraction occupancy) evaluated. Statistical analyses were performed using the Kruskal-Wallis test followed by Dunns post hoc test for multiple comparisons at the 95% level of significance. RESULTS The insertion torque levels obtained were inversely proportional to the drilling dimension, with a significant difference detected between the 3.2-mm and 3.8-mm groups (P = .003). Despite a significant increase in the bone-to-implant contact over time in vivo for all groups (P = .007), no effect for the drilling dimension was observed. Additionally, no effect of the drilling dimension and time was observed for the bone area fraction occupancy parameter (P = .31). The initial healing pathways differed between implants placed in bone drilled to different dimensions. CONCLUSIONS Although different degrees of torque were observed with different drilling dimensions and these resulted in different healing patterns, no differences in the histometrically evaluated parameters were observed.


Journal of Prosthodontics | 2011

Additive CAD/CAM Process for Dental Prostheses

Nelson R.F.A. Silva; Lukasz Witek; Paulo G. Coelho; Van P. Thompson; Elizabeth D. Rekow; Jim Smay

This article describes the evolution of a computer-aided design/computer-aided manufacturing (CAD/CAM) process where ceramic paste is deposited in a layer-by-layer sequence using a computer numerical control machine to build up core and fixed partial denture (FPD) structures (robocasting). Al(2)O(3) (alumina) or ZrO(2) (Y-TZP) are blended into a 0.8% aqueous solution of ammonium polyacrylate in a ratio of approximately 1:1 solid:liquid. A viscosifying agent, hydroxypropyl methylcellulose, is added to a concentration of 1% in the liquid phase, and then a counter polyelectrolyte is added to gel the slurry. There are two methods for robocasting crown structures (cores or FPD framework). One is for the core to be printed using zirconia ink without support materials, in which the stereolithography (STL) file is inverted (occlusal surface resting on a flat substrate) and built. The second method uses a fugitive material composed of carbon black codeposited with the ceramic material. During the sintering process, the carbon black is removed. There are two key challenges to successful printing of ceramic crowns by the robocasting technique. First is the development of suitable materials for printing, and second is the design of printing patterns for assembly of the complex geometry required for a dental restoration. Robocasting has room for improvement. Current development involves enhancing the automation of nozzle alignment for accurate support material deposition and better fidelity of the occlusal surface. An accompanying effort involves calculation of optimal support structures to yield the best geometric results and minimal material usage.


Journal of Biomedical Materials Research Part A | 2013

Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants

Gabriela Giro; Nick Tovar; Lukasz Witek; Charles Marin; Nelson R.F.A. Silva; Estevam A. Bonfante; Paulo G. Coelho

This study investigated the effect of an Argon-based nonthermal plasma (NTP) surface treatment-operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: Calcium-Phosphate (CaP) and CaP + NTP (CaP-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received 2 plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunns post-hoc test. The XPS analysis showed peaks of Ca, C, O, and P for the CaP and CaP-Plasma surfaces. Both surfaces presented carbon primarily as hydrocarbon (C-C, C-H) with lower levels of oxidized carbon forms. The CaP surface presented atomic percent values of 38, 42, 11, and 7 for C, O, Ca, and P, respectively, and the CaP-Plasma presented increases in O, Ca, and P atomic percent levels at 53, 12, and 13, respectively, in addition to a decrease in C content at 18 atomic percent. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC and BAFO were observed for CaP-Plasma treated surfaces. Surface elemental chemistry was modified by the Ar-based NTP. Ar-based NTP improved bone formation around plateau-root form implants at 3 weeks compared with CaP treatment alone.


Journal of Biomedical Materials Research Part B | 2012

Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs

Lukasz Witek; Charles Marin; Rodrigo Granato; Estevam A. Bonfante; Felipe Eduardo Baires Campos; Julio Bisinotto; Marcelo Suzuki; Paulo G. Coelho

Laser metal sintering has shown promising results, but no comparison with other commercially available surface has been performed. This study sought to evaluate the biomechanical and histological early bone response to laser sintered implants relative to alumina-blasted/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry. Surface chemistry was assessed by x-ray photoelectron spectroscopy. Beagle dogs (n = 18) received 4 Ti-6Al-4V implants (one per surface) in each radius, remaining for 1, 3, and 6 weeks (n = 6 dogs per evaluation time) in vivo. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were evaluated. Biomechanical evaluation comprised torque-to-interface failure. The laser sintered surface presented higher S(a) and S(q) than AB/AE. Chemistry assessment showed the alloy metallic components along with adsorbed carbon species. Significantly higher torque was observed at 1 (p < 0.02) and 6 week (p < 0.02) for the laser sintered, whereas at 3 week no significant differences were observed. Significantly higher BIC and BAFO was observed for the Laser Sintered (p < 0.04, and p < 0.03, respectively) only at 1 week, whereas no significant differences were observed at 3 and 6 weeks. The laser sintered implants presented biocompatible and osseoconductive properties and improved biomechanical response compared with the AB/AE surface only at 1 and 6 weeks in vivo.


Journal of Periodontology | 2011

Characterization of Five Different Implant Surfaces and Their Effect on Osseointegration: A Study in Dogs

Paulo G. Coelho; Estevam A. Bonfante; Roberto Sales e Pessoa; Charles Marin; Rodrigo Granato; Gabriela Giro; Lukasz Witek; Marcelo Suzuki

BACKGROUND Chemical modification of implant surface is typically associated with surface topographic alterations that may affect early osseointegration. This study investigates the effects of controlled surface alterations in early osseointegration in an animal model. METHODS Five implant surfaces were evaluated: 1) alumina-blasting, 2) biologic blasting, 3) plasma, 4) microblasted resorbable blasting media (microblasted RBM), and 5) alumina-blasting/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry, and chemical assessment by x-ray photoelectron spectroscopy. The implants were placed in the radius of six dogs, remaining 2 and 4 weeks in vivo. After euthanization, specimens were torqued-to-interface failure and non-decalcified-processed for histomorphologic bone-implant contact, and bone area fraction-occupied evaluation. Statistical evaluation was performed by one-way analysis of variance (P <0.05) and post hoc testing by the Tukey test. RESULTS The alumina-blasting surface presented the highest average surface roughness and mean root square of the surface values, the biologic blasting the lowest, and AB/AE an intermediate value. The remaining surfaces presented intermediate values between the biologic blasting and AB/AE. The x-ray photoelectron spectroscopy spectra revealed calcium and phosphorus for the biologic blasting and microblasted RBM surfaces, and the highest oxygen levels for the plasma, microblasted RBM, and AB/AE surfaces. Significantly higher torque was observed at 2 weeks for the microblasted RBM surface (P <0.04), but no differences existed between surfaces at 4 weeks (P >0.74). No significant differences in bone-implant contact and bone area fraction-occupied values were observed at 2 and 4 weeks. CONCLUSION The five surfaces were osteoconductive and resulted in high degrees of osseointegration and biomechanical fixation.


International Journal of Oral and Maxillofacial Surgery | 2014

Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study

Nick Tovar; Ryo Jimbo; Riddhi Gangolli; L. Perez; Lakshmipradha Manne; Daniel Yoo; Fabio Cesar Lorenzoni; Lukasz Witek; Paulo G. Coelho

This in vivo study investigated the in vivo performance of two newly developed synthetic bone substitutes and compared them to commercially available xenografts (Bio-Oss, Geistlich Pharma AG, Switzerland; OsteoGraf, Dentsply, USA). The materials were tested in a rabbit calvaria model, and the bone forming properties were observed at 4 and 8 weeks after implantation by means of histomorphometry and micro computed tomography (micro-CT). Defects without any graft material were used as negative controls. Micro-CT showed that all materials tested presented new bone formation that filled the defects at both time points, whereas the negative control presented less bone formation, with soft tissue infiltration into the defects. Comparable bone fill percentages were observed for histomorphometric and micro-CT results. Even though no statistically significant difference was found quantitatively between all of the bone graft substitute groups, a higher mean decrease in graft material filling the defects, along with higher remodelling activity, was evident for the experimental materials compared to the commercially available xenografts at 8 weeks. The results indicate that the experimental materials possess high degradability, along with osteoconduction comparable to commercially available xenografts.


International Journal of Oral & Maxillofacial Implants | 2013

Implant biomechanical stability variation at early implantation times in vivo: an experimental study in dogs.

Julio B. Gomes; Felipe Eduardo Baires Campos; Charles Marin; Hellen S. Teixeira; Estevam A. Bonfante; Marcelo Suzuki; Lukasz Witek; Darceny Zanetta-Barbosa; Paulo G. Coelho

PURPOSE To demonstrate the degree of stability decrease and subsequent increase of dental implants at early implantation times in a beagle model. MATERIALS AND METHODS The mandibular premolars and first molars of eight beagle dogs were extracted and the ridges allowed to heal for 8 weeks. Thirty-two (n = 16 each group) implants were placed bilaterally, and remained in vivo for 1 and 3 weeks. The implants with comparable dimensions were divided as follows: group 1, Straumann Bone Level with SLActive surface; group 2, Nobel Speedy Replace RP with TiUnite surface. During insertion and following sacrifice, the implants were torqued to determine insertion and interface failure values. Histologic sections were prepared for microscopy. Statistical analysis was performed using Kruskal-Wallis and multiple paired and non-paired t tests considering unequal variances at a 95% level of significance. RESULTS High insertion torque values were observed along with a significant decrease at 1 week in vivo (P = .003). At 3 weeks, the biomechanical fixation levels increased and were comparable to the insertion torque value. Histology showed that interfacial bone remodeling and initial woven bone formation was observed around both implant groups at 1 and 3 weeks. CONCLUSIONS As time elapsed early after implantation, the biomechanical stability of dental implants initially decreased and subsequently increased.


Clinical Oral Implants Research | 2015

Influence of placement depth on bone remodeling around tapered internal connection implants: a histologic study in dogs

Baoxin Huang; Huanxin Meng; Weidong Zhu; Lukasz Witek; Nick Tovar; Paulo G. Coelho

OBJECTIVES To evaluate the influence of implant-abutment interface (IAI) placement depth on bone remodeling around implants with two different types of tapered internal IAI: screwed-in (SI) and tapped-in (TI) connections in dogs. MATERIALS AND METHODS Eight weeks post mandibular tooth extraction in six beagle dogs, two SI implants (OsseoSpeed(™), Astra Tech, DENTSPLY) and two TI implants (Integra-CP(™), Bicon LLC) were placed in one side of the mandible. The four experimental groups were as follows: (i) SI-placed equicrestally (SIC); (ii) TI-placed equicrestally (TIC); (iii) SI-placed 1.5 mm subcrestally (SIS); and (iv) TI-placed 1.5 mm subcrestally (TIS). Healing abutments were connected 12 weeks after implant placement. Sixteen weeks later, the dogs were sacrificed and histomorphometric analysis was performed. Histometrical outcomes were evaluated using a nonparametric Brunner-Langer model. RESULTS Mean distance from the IAI to first bone-implant contact (IAI-fBIC) was 0.88 mm (median: 0.77; SD: 0.54) for SIC group, 1.23 mm (median: 1.22; SD: 0.66) for TIC group, 0.41 mm (median: 0.31; SD: 0.36) for SIS group, and 0.41 mm (median: 0.26; SD: 0.45) for TIS group. Subcrestal groups showed lower IAI-fBIC compared with equicrestal groups (P < 0.001). Connective tissue presented similar measurements regardless of the IAI placement depth and IAI type (P > 0.05), but the epithelium length and peri-implant soft tissue length in subcrestal groups were significant larger than that in the equicrestal groups (P < 0.001 and P = 0.004, respectively). CONCLUSION Subcrestal implant placement with tapered internal IAI is beneficial for bone contact with the implant neck, and concurrently, it may not increase the soft tissue inflammation around IAI.


Journal of Oral Implantology | 2012

Histologic and biomechanical evaluation of alumina-blasted/acid-etched and resorbable blasting media surfaces.

Estevam A. Bonfante; Charles Marin; Rodrigo Granato; Marcelo Suzuki; Jenni Hjerppe; Lukasz Witek; Paulo G. Coelho

This study evaluated the early biomechanical fixation and bone-to-implant contact (BIC) of an alumina-blasted/acid-etched (AB/AE) compared with an experimental resorbable blasting media (RBM) surface in a canine model. Higher texturization was observed for the RBM than for the AB/AE surface, and the presence of calcium and phosphorus was only observed for the RBM surface. Time in vivo and implant surface did not influence torque. For both surfaces, BIC significantly increased from 2 to 4 weeks.


Plastic and Reconstructive Surgery | 2011

Interval Cranioplasty: Comparison of Current Standards

Steven M. Sultan; Edward H. Davidson; Parag Butala; Jeffrey S. Schachar; Lukasz Witek; Caroline Szpalski; John L. Ricci; Pierre B. Saadeh; Stephen M. Warren

Background: Although different cranioplasty storage methods are currently in use, no study has prospectively compared these methods. The authors compare freezing and subcutaneous storage methods in a rat model. Methods: Trephine defects (10 mm) were created in 45 Sprague-Dawley rats. The cranial bone grafts were stored in an autologous subcutaneous pocket (n = 15), frozen at –80°C (n = 15), immediately analyzed (n = 12), or immediately replanted into the defect (n = 3). After 10 days of storage, the subcutaneous or frozen grafts were either replanted (subcutaneous, n = 3; frozen, n = 3) or analyzed (subcutaneous, n = 12; frozen, n = 12). Grafts underwent histologic analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase assay, mechanical testing, and micro–computed tomographic imaging. Results: After 10 days of storage, physiologic assays demonstrated a significant decrease in cellular functionality (e.g., alkaline phosphatase assay concentration: fresh, 18.8 ± 0.77 mM/mg; subcutaneous, 12.2 ± 0.63 mM/mg; frozen, 8.07 ± 1.1 mM/mg; p < 0.012 for all comparisons). Mechanical integrity (maximal load) of fresh grafts was greatest (fresh, 9.26 ± 0.29 N; subcutaneous, 6.27 ± 0.64 N; frozen, 4.65 ± 0.29 N; fresh compared with frozen, p < 0.001; fresh compared with subcutaneous, p = 0.006). Replantation of subcutaneously stored and frozen grafts resulted in limited bony union and considerable resorption after 12 weeks; in contrast, replanted fresh grafts demonstrated bony union and little resorption. Conclusions: Current preservation methods for interval cranioplasty do not maintain bone graft viability. Subcutaneous storage appears to provide a small advantage compared with freezing.

Collaboration


Dive into the Lukasz Witek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge