Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luke A. Moe is active.

Publication


Featured researches published by Luke A. Moe.


The ISME Journal | 2009

Functional metagenomics reveals diverse b-lactamases in a remote Alaskan soil

Heather K. Allen; Luke A. Moe; Jitsupang Rodbumrer; Andra Gaarder; Jo Handelsman

Despite the threat posed by antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, particularly among the as yet unculturable environmental bacteria. One potentially rich but largely unstudied environmental reservoir is soil. The complexity of its microbial community coupled with its high density of antibiotic-producing bacteria makes the soil a likely origin for diverse antibiotic resistance determinants. To investigate antibiotic resistance genes among uncultured bacteria in an undisturbed soil environment, we undertook a functional metagenomic analysis of a remote Alaskan soil. We report that this soil is a reservoir for β-lactamases that function in Escherichia coli, including divergent β-lactamases and the first bifunctional β-lactamase. Our findings suggest that even in the absence of selective pressure imposed by anthropogenic activity, the soil microbial community in an unpolluted site harbors unique and ancient β-lactam resistance determinants. Moreover, despite their evolutionary distance from previously known genes, the Alaskan β-lactamases confer resistance on E. coli without manipulating its gene expression machinery, demonstrating the potential for soil resistance genes to compromise human health, if transferred to pathogens.


Applied and Environmental Microbiology | 2010

Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins.

Justin J. Donato; Luke A. Moe; Brandon J. Converse; Keith D. Smart; Flora C. Berklein; Patricia S. McManus; Jo Handelsman

ABSTRACT To gain insight into the diversity and origins of antibiotic resistance genes, we identified resistance genes in the soil in an apple orchard using functional metagenomics, which involves inserting large fragments of foreign DNA into Escherichia coli and assaying the resulting clones for expressed functions. Among 13 antibiotic-resistant clones, we found two genes that encode bifunctional proteins. One predicted bifunctional protein confers resistance to ceftazidime and contains a natural fusion between a predicted transcriptional regulator and a β-lactamase. Sequence analysis of the entire metagenomic clone encoding the predicted bifunctional β-lactamase revealed a gene potentially involved in chloramphenicol resistance as well as a predicted transposase. A second clone that encodes a predicted bifunctional protein confers resistance to kanamycin and contains an aminoglycoside acetyltransferase domain fused to a second acetyltransferase domain that, based on nucleotide sequence, was predicted not to be involved in antibiotic resistance. This is the first report of a transcriptional regulator fused to a β-lactamase and of an aminoglycoside acetyltransferase fused to an acetyltransferase not involved in antibiotic resistance.


Applied Microbiology and Biotechnology | 2014

Bacterial synthesis of d -amino acids

Atanas D. Radkov; Luke A. Moe

Recent work has shed light on the abundance and diversity of d-amino acids in bacterial extracellular/periplasmic molecules, bacterial cell culture, and bacteria-rich environments. Within the extracellular/periplasmic space, d-amino acids are necessary components of peptidoglycan, and disruption of their synthesis leads to cell death. As such, enzymes responsible for d-amino acid synthesis are promising targets for antibacterial compounds. Further, bacteria are shown to incorporate a diverse collection of d-amino acids into their peptidoglycan, and differences in d-amino acid incorporation may occur in response to differences in growth conditions. Certain d-amino acids can accumulate to millimolar levels in cell culture, and their synthesis is proposed to foretell movement from exponential growth phase into stationary phase. While enzymes responsible for synthesis of d-amino acids necessary for peptidoglycan (d-alanine and d-glutamate) have been characterized from a number of different bacteria, the d-amino acid synthesis enzymes characterized to date cannot account for the diversity of d-amino acids identified in bacteria or bacteria-rich environments. Free d-amino acids are synthesized by racemization or epimerization at the α-carbon of the corresponding l-amino acid by amino acid racemase or amino acid epimerase enzymes. Additionally, d-amino acids can be synthesized by stereospecific amination of α-ketoacids. Below, we review the roles of d-amino acids in bacterial physiology and biotechnology, and we describe the known mechanisms by which they are synthesized by bacteria.


Trends in Biotechnology | 2014

Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

Muhammad Saleem; Luke A. Moe

Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes.


Journal of Bacteriology | 2013

Amino Acid Racemization in Pseudomonas putida KT2440

Atanas D. Radkov; Luke A. Moe

D-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, arginine, alanine, and hydroxyproline as the sole carbon and nitrogen sources. With the exception of phenylalanine, each of these amino acids was racemized by P. putida KT2440 enzymes. Three amino acid racemases were identified from a genomic screen, and the enzymes were further characterized in vitro. The putative biosynthetic alanine racemase Alr showed broad substrate specificity, exhibiting measurable racemase activity with 9 of the 19 chiral amino acids. Among these amino acids, activity was the highest with lysine, and the k(cat)/K(m) values with l- and d-lysine were 3 orders of magnitude greater than the k(cat)/K(m) values with l- and d-alanine. Conversely, the putative catabolic alanine racemase DadX showed narrow substrate specificity, clearly preferring only the alanine stereoisomers as the substrates. However, DadX did show 6- and 9-fold higher k(cat)/K(m) values than Alr with l- and d-alanine, respectively. The annotated proline racemase ProR of P. putida KT2440 showed negligible activity with either stereoisomer of the 19 chiral amino acids but exhibited strong epimerization activity with hydroxyproline as the substrate. Comparative genomic analysis revealed differences among pseudomonads with respect to alanine racemase genes that may point to different roles for these genes among closely related species.


PLOS ONE | 2015

A Response Regulator from a Soil Metagenome Enhances Resistance to the β-Lactam Antibiotic Carbenicillin in Escherichia coli

Heather K. Allen; Ran An; Jo Handelsman; Luke A. Moe

Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16) harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins), rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs) that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.


PLOS ONE | 2016

The Effect of Root Exudate 7,4'-Dihydroxyflavone and Naringenin on Soil Bacterial Community Structure.

Márton Szoboszlay; Alison White-Monsant; Luke A. Moe

Our goal was to investigate how root exudate flavonoids influence the soil bacterial community structure and to identify members of the community that change their relative abundance in response to flavonoid exudation. Using a model system that approximates flavonoid exudation of Medicago sativa roots, we treated a soil with 7,4′-dihydroxyflavone and naringenin in two separate experiments using three different rates: medium (equivalent to the exudation rate of 7,4′-dihydroxyflavone from M. sativa seedlings), high (10× the medium rate), and low (0.1× the medium rate). Controls received no flavonoid. Soil samples were subjected to ATP assays and 16S rRNA gene amplicon sequencing. The flavonoid treatments caused no significant change in the soil ATP content. With the high 7,4′-dihydroxyflavone treatment rate, operational taxonomic units (OTUs) classified as Acidobacteria subdivision 4 increased in relative abundance compared with the control samples, whereas OTUs classified as Gaiellales, Nocardioidaceae, and Thermomonosporaceae were more prevalent in the control. The naringenin treatments did not cause significant changes in the soil bacterial community structure. Our results suggest that the root exudate flavonoid 7,4′-dihydroxyflavone can interact with a diverse range of soil bacteria and may have other functions in the rhizosphere in addition to nod gene induction in legume—rhizobia symbiosis.


Current Microbiology | 2014

Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States.

Colin A. Murphree; E. Patrick Heist; Luke A. Moe

Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a β-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages.


Amino Acids | 2016

Distribution and evolution of the serine/aspartate racemase family in invertebrates

Kouji Uda; Keita Abe; Yoko Dehara; Kiriko Mizobata; Natsumi Sogawa; Yuki Akagi; Mai Saigan; Atanas D. Radkov; Luke A. Moe

Free d-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150–152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.


Microbes and Environments | 2016

D-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria

Atanas D. Radkov; Katlyn McNeill; Koji Uda; Luke A. Moe

Soil and rhizosphere environments were examined in order to determine the identity and relative abundance of bacteria that catabolize d- and l-amino acids as the sole source of carbon and nitrogen. All substrates were readily catabolized by bacteria from both environments, with most d-amino acids giving similar CFU counts to their l-amino acid counterparts. CFU count ratios between l- and d-amino acids typically ranged between 2 and 1. Isolates were phylogenetically typed in order to determine the identity of d-amino acid catabolizers. Actinobacteria, specifically the Arthrobacter genus, were abundant along with members of the α- and β-Proteobacteria classes.

Collaboration


Dive into the Luke A. Moe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather K. Allen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Li

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Ran An

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge